Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T19:46:51.730Z Has data issue: false hasContentIssue false

Self-Formed Aluminum Nitride Microtubes that Exhibit a Large Bending Stress

Published online by Cambridge University Press:  21 March 2011

Morito Akiyama
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology, 807-1 Shuku, Tosu, Saga 841-0052 Japan
Kazuhisa Shobu
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology, 807-1 Shuku, Tosu, Saga 841-0052 Japan
Chao-Nan Xu
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology, 807-1 Shuku, Tosu, Saga 841-0052 Japan
Kazuhiro Nonaka
Affiliation:
Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Science and Technology, 807-1 Shuku, Tosu, Saga 841-0052 Japan
Get access

Abstract

We have investigated the aluminum nitride microtubes made of aluminum nitride thin film. Aluminum nitride thin film deposited on aluminum foil forms microtubes of itself at room temperature when the aluminum foil is dissolved in hydrochloric acid solution. The aluminum nitride microtubes exhibit a large bending stress of 1100 94 megapascals. The bending stress is more than three times larger than the bending strength of aluminum nitride bulk. The diameter of the microtubes is proportional to the film thickness. The bending stress is independent of the film thickness and is fixed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fox, G., Danai, P. A., J. Mater. Res. 9, 2737 (1994).Google Scholar
2. Keller, N., Cuong, P. H., Ledoux, M. J., Estournes, C., Ehret, G., Appl. Catalysis A 187, 255 (1999).Google Scholar
3. Inaba, M., Mineshige, A., Nakanishi, S., Nishimura, I., Tasaka, A., Kikuchi, K., Ogumi, Z., Thin Solid Films 323, 18 (1998).Google Scholar
4. Huppertz, H., Stock, N., Schnick, W., Adv. Mater. 8, 844 (1996).Google Scholar
5. Remskar, M., Skraba, Z., Cleton, F., Sanjines, R., Levy, F., Appl. Phys. Lett. 69, 351 (1996).Google Scholar
6. Nanai, L., George, T. F., J. Mater. Res. 12, 283 (1997).Google Scholar
7. Akiyama, M., Xu, C. N., Nonaka, K., Shobu, K., Watanabe, T., Thin Solid Films 315, 62 (1998).Google Scholar
8. Ohring, M., The materials science of thin films (Academic press, Boston, 1992) pp. 413418.Google Scholar
9. Thornton, J. A., J. Vac. Sci. Technol. 11, 666 (1974).Google Scholar
10. Someno, Y., Hirai, T., Materia Japan 30, 913 (1991).Google Scholar
11. Kuramoto, N., Taniguchi, H., Aso, I., Bull. Am. Ceram. Soc. 68, 883 (1989).Google Scholar
12. Thornton, J. A., Hoffman, D. W., Thin Solid Films 171, 5 (1989).Google Scholar
13. Chopra, K. L., Thin film phenomena (McGraw Hill, New York, 1969) pp. 271287.Google Scholar
14. Hanabusa, T., Kusaka, K., Tominaga, K., Fujiwara, H., J. Soc. Mat. Sci. Jpn. 42, 627 (1993).Google Scholar
15. Yim, W. M., Paff, R. J., J. Appl. Phys. 45, 1456 (1974).Google Scholar