Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T19:37:13.775Z Has data issue: false hasContentIssue false

Reflectivity Difference Spectra of GaAs and ZnSe (100) Surfaces

Published online by Cambridge University Press:  15 February 2011

C. C. Kim
Affiliation:
University of Illinois at Chicago, Microphysics Laboratory, Dept. of Physics (m/c 273), 845 W. Taylor St., Chicago IL 60607-7059
S. Sivananthan
Affiliation:
University of Illinois at Chicago, Microphysics Laboratory, Dept. of Physics (m/c 273), 845 W. Taylor St., Chicago IL 60607-7059
Get access

Abstract

Using a photoelastic modulator in the optical-bridge configuration, the reflectivity difference was obtained for GaAs and ZnSe (100) surfaces over the photon energy range from 1.5 eV to 6 eV with various azimuthal orientations of the surface. The RD data of GaAs (100) are similar to previously reported data. The RD data of ZnSe (100) are larger by an order of magnitude than those of GaAs (100), possibly due to the larger ionicity of Zn and Se atoms. The distinctive critical point structures and interference patterns shown in the RD spectra of ZnSe (100) suggest that the data, if obtained in real time, could be used to determine the alloy composition, thickness and temperature during growth. The RD data are analyzed using models proposed by Aspnes. The results indicate that the major contribution to the RD spectra of ZnSe (100) are from the surface local field unlike the RD spectra of GaAs (110), whose major contribution is from the bulk spatial distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aspnes, D. E., J. Vac. Sci. Technol. B 3, 1138 (1985).Google Scholar
2. Aspnes, D. E. and Studna, A. A., Phys. Rev. Lett. 54, 1956 (1985).Google Scholar
3. Aspnes, D. E., J. Vac. Sci. Technol. B 3, 1498 (1985).Google Scholar
4. Aspnes, D. E., Chang, Y. C., Studna, A. A., Florez, L. T., Farrell, H. H., and Harbison, J. P., Phys. Rev. Lett. 64, 192 (1990).Google Scholar
5. Colas, E., Aspnes, D. E., Bhat, R., Studna, A. A., Harbison, J. P., Florez, L. T., Koza, M. A. and Keramidas, V. G., J. Cryst. Growth 107, 47 (1991).Google Scholar
6. Jönsson, J., Paulsson, G., and Samuelson, L., J. Appl. Phys. 70, 1737 (1991).Google Scholar
7. Philips, B. A., Kamiya, I., Hingerl, K., Florez, L. T., Aspnes, D. E., Mahajan, S., and Harbison, J. P., Phys. Rev. Lett. 18, 3640 (1995).Google Scholar
8. Neumark, G. F., Park, R. M., and DePuydt, J. M., Physics Today 47 No. 6, 26 (1994)Google Scholar
9. Gunshor, R. L. and Nurmikko, A. V., MRS Bulletin 20 No. 7, 15 (1995).Google Scholar
10. Haugen, G. M., Guha, S., Cheng, H., DePuydt, J. M., Haase, M. A., Höfler, G. E., Qiu, J., and Wu, B. J., Appl. Phys. Lett. 66, 358 (1995).Google Scholar
11. Aspnes, D. E., Harbison, J. P., Studna, A. A., and Florez, L. T., J. Vac. Sci. Technol. A 6, 1327 (1988).Google Scholar
12. Aspnes, D. E., Studna, A. A., J. Vac. Sci. Technol. A 5, 545 (1987).Google Scholar
13. Kim, C. C. and Sivananthan, S., to be published in Phys. Rev. BGoogle Scholar
14. Kim, C. C., Raccah, P. M., and Garland, J. W., Rev. Sci. Instrum. 63, 2958 (1992).Google Scholar
15. Bermudez, V. M. and Ritz, V. H., Appl. Opt. 17, 15 (1978).Google Scholar
16. Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarization Light (North-Holland, New York, 1977).Google Scholar
17. Farrell, H. H., Tarmargo, M. C., Gmitter, T. J., Weaver, A. L., and Aspnes, D. E., J. Appl. Phys. 70, 1033 (1991).Google Scholar