Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-02T07:57:23.725Z Has data issue: false hasContentIssue false

Recombination and Resistive Losses in Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells

Published online by Cambridge University Press:  17 March 2011

Nils Jensen
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany, nils.jensen@ipe.uni-stuttgart.de
Uwe Rau
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Jürgen H. Werner
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

This contribution investigates the electronic properties of a-Si:H/c-Si solar cells and explains their electrical output parameters open circuit voltage, short circuit current, and fill factor. Our device analysis is based on measurements of the internal quantum efficiency, of current/voltage and capacitance/voltage curves. We find carrier recombination within the crystalline silicon absorber material to be responsible for the limitation of the open circuit voltage. The short circuit current is restricted by collection losses in the absorber material and by absorption in the electrically inactive a-Si:H emitter. Resistive losses affecting the fill factor originate from the transport of minority carriers across the interface. The I/V curves measured at low temperatures reveal a characteristic S-shaped behavior. This effect increases with decrasing temperature and stems from the minority carrier transport, which is hindered by the band offset between a-Si:H and c-Si. We propose a new analytical model to describe this anomalous behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Werner, J. H., Appl. Phys. A 47, 291 (1988).Google Scholar
2 Jensen, N., Rau, U., Hausner, R. M., Uppal, S., Oberbeck, L., Bergmann, R. B., and Werner, J. H., J. Appl. Phys. 87, 2639 (2000).Google Scholar
3 Basore, P. A., in Proceedings of the 23rd IEEE Photovoltaic Specialists Conference (IEEE, New York, 1993), p.147.Google Scholar
4 Eschrich, H., Bruns, J., Elstner, L., and Swiatkowski, C., J. Non-Cryst. Sol. 164–166 (1993), p. 717.Google Scholar
5 Cleef, M. W. M. van, Rubinelli, F. A., Rizzoli, R., Pinghini, R., Schropp, R. E. I., and Weg, W. F. van der, Jpn. J. Appl. Phys. 37, 3926 (1998).Google Scholar
6 Crowell, C. R., Rideout, V. L., Solid-State Electron. 12, 89 (1969).Google Scholar