Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T16:03:28.709Z Has data issue: false hasContentIssue false

Real-Time ESR Observation During Film Growth of a-Si:H

Published online by Cambridge University Press:  15 February 2011

S. Yamasaki
Affiliation:
Joint Research Center for Atom Technology - National Institute for Advanced Interdisciplinary Research (JRCAT-NAIR), 1–1–4, Higashi, Tsukuba, Ibaraki 305, Japan
T. Umeda
Affiliation:
Joint Research Center for Atom Technology - National Institute for Advanced Interdisciplinary Research (JRCAT-NAIR), 1–1–4, Higashi, Tsukuba, Ibaraki 305, Japan
J. Isoya
Affiliation:
Joint Research Center for Atom Technology - National Institute for Advanced Interdisciplinary Research (JRCAT-NAIR), 1–1–4, Higashi, Tsukuba, Ibaraki 305, Japan
K. Tanaka
Affiliation:
Joint Research Center for Atom Technology - National Institute for Advanced Interdisciplinary Research (JRCAT-NAIR), 1–1–4, Higashi, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

In-situ electron-spin-resonance (ESR) measurements of film growth of hydrogenated amorphous silicon (a-Si:H) using a remote hydrogen plasma technique have been performed. The Si dangling-bond signal in a-Si:H during and after deposition has been detected, in addition to the gas-phase ESR signals both of atomic hydrogen and photo-excited SiHx molecules. Dynamic changes of the Si dangling-bond signal intensity were observed when the deposition started and stopped, which has suggested the existence of a subsurface region with higher spin density than that in the bulk region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1997).Google Scholar
2. Dersh, H., Stuke, J., and Beichler, J., Appl. Phys. Lett. 38, 1456 (1980).Google Scholar
3. Isoya, J., Yamasaki, S., Okushi, H., Matsuda, A., and Tanaka, K., Phys. Rev. B47, 7013 (1993).Google Scholar
4. Yamasaki, S. and Isoya, J., J. Non-Cryst. Solids, 164–166, 169 (1993).Google Scholar
5. Zhao, Y., Zhang, D., Kong, G., Pan, G. and Liao, X., Phys. Rev. Lett. 74, 558 (1995).Google Scholar
6. Masson, D. P., Ouhlal, A. and Yelon, A. A., J. Non-Cryst. Solids, 190, 151 (1995).Google Scholar
7. Gan, J. and Kakalios, J., Phil. Mag. B69, 595 (1994)Google Scholar
8. Hari, P., Taylor, P. C. and Street, R. A., in “Amorphous Silicon Technology - 1994”, edited by Schiff, E. A., Hack, M., Madan, A., Powell, M. and Matsuda, A. (Materials Research Society, Pittsburgh, 1994) Vol. 336, p. 329.Google Scholar
9. Fritzsche, H., Solid State Commun. 94, 953, 1995.Google Scholar
10. Toyoshima, Y., Arai, K., Matsuda, A., and Tanaka, K., J. Non-Cryst. Solids, 137&138, 765 (1991).Google Scholar
11. Collins, W., An, I., Nguyen, H. V., Li, Y., and Lu, Y., in Physics of Thin Films, Optical Characterization of Real Surfaces and Films, edited by Francombe, M. H., and Vossen, J. L., (Academic Press, San Diego, 1991) pp 565620.Google Scholar
12. Lagally, M.G., Mo, Y.-W., Kariotis, R., Swartzentruber, B.S., and Webb, M.B., p. 145, in Kinetics of Ordering and Growth at Surfaces, edited by Lagally, M.G., (Plenum Press, New York, 1990).Google Scholar
13. Ikuta, K., Tanaka, K., Yamasaki, S., Miki, K., and Matsuda, A., Appl. Phys. Lett. 65, 1760 (1994).Google Scholar
14. Johnson, N. M., Walker, J., and Stevens, K.S., Appl. Phys. Lett. 69, 2631 (1991).Google Scholar
15. Yamasaki, S., Umeda, T., Isoya, J., and Tanaka, K., Appl. Phys. Lett. 70, 1137 (1997).Google Scholar
16. See, for example, Lucovsky, G., Tsu, D. V., Rudder, R. A. and Markunas, R. J., in Thin Film Processes, edited by Vossen, J. L. and Kern, W., (Academic Press, San Diego, 1991) pp 565620.Google Scholar
17. Jones, W. E., Macknight, S. D., and Teng, L., J. Phys. Chem. 73, 407 (1973),Google Scholar
Ausin, E. R. and Lampe, F. W., J. Phys. Chem., 81, 1134 (1977).Google Scholar
18. Westernberg, A. A., Prog. React. Kinet. 7, 23 (1973).Google Scholar
19. Kaptein, R., in Chmically Induced Magnetic Polarization, NATO Advanced Study Insititutes Series C, Volume 34,, edited by Muus, L. T., Atkins, P. W., McLauchlan, K. A., and Pedersen, J. B., (D. Reidel Pullishing Company, Dordrecht, 1997, pp. 116.Google Scholar
20. Weeks, R. A., J. Non-Cryst. Solids 179, 1 (1994).Google Scholar
21. Tsai, T.-E. and Griscom, D. L., J. Non-Cryst. Solids 91, 170 (1987).Google Scholar
22. Triplett, B. B., Takahashi, T., and Sugano, T., Appl. Phys. Lett. 50, 1663 (1987)Google Scholar