Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T07:20:30.817Z Has data issue: false hasContentIssue false

Preparation of Microporous Films with Sub Nanometer Pores and their Characterization Using Stress and FTIR Measurements

Published online by Cambridge University Press:  10 February 2011

J. Samuel
Affiliation:
Ceramic Processing Science Department, Sandia National Laboratories, Albuquerque, NM 87185-0609
A. J. Hurd
Affiliation:
Ceramic Processing Science Department, Sandia National Laboratories, Albuquerque, NM 87185-0609
F. van Swol
Affiliation:
Department 9225, Sandia National Laboratories, Albuquerque, NM 87185-1111
L. J. Douglas Frink
Affiliation:
Department 9225, Sandia National Laboratories, Albuquerque, NM 87185-1111
C. J. Brinker
Affiliation:
Ceramic Processing Science Department, Sandia National Laboratories, Albuquerque, NM 87185-0609 UNMNSF Center for Micro engineered Ceramics, University of New Mexico, Albuquerque, NM 87131
S. C. Contakes
Affiliation:
Ceramic Processing Science Department, Sandia National Laboratories, Albuquerque, NM 87185-0609
Get access

Abstract

We have used a novel technique, measurement of stress isotherms in microporous thin films, as a means of characterizing porosity. The stress measurement was carried out by applying sol-gel thin films on a thin silicon substrate and monitoring the curvature of the substrate under a controlled atmosphere of various vapors. The magnitude of macroscopic bending stress developed in microporous films depends on the relative pressure and molar volume of the adsorbate and reaches a value of 180 MPa for a relative vapor pressure, P/Po = 0.001, of methanol. By using a series of molecules, and observing both the magnitude and the kinetics of stress development while changing the relative pressure, we have determined the pore size of microporous thin films. FTIR measurements were used to acquire adsorption isotherms and to compare pore emptying to stress development, about 80% of the change in stress takes place with no measurable change in the amount adsorbed. We show that for sol-gel films, pore diameters can be controlled in the range of 5 – 8 Å by “solvent templating”.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Raman, N. K., Brinker, C. J.; J. Membrane. Sci. 105, 273 (1995).Google Scholar
2. Behrens, P.; Adv. Mater. 5, 19, (1993).Google Scholar
3. Gregg, S. J., Sing, K. S. W; Adsorption, Surface Area and Porosity (Academic Press 1982).Google Scholar
4. Bandosz, T. J., Jagiello, J., Putyera, K., Schwarz, J. A.; Langmuir 11, 3964 (1995).Google Scholar
5. Ricco, A. J., Frye, G. C., Martin, S. J.; Langmuir 5, 273 (1989).Google Scholar
6. Samuel, J., unpublished data.Google Scholar
7. Fadad, M. A., Yeatmen, E. M., , E. J. C., , Dawnay, Green, M., Horowitz, F.; J. Non. Cryst. Sol. 183, 269 (1995).Google Scholar
8. Corcoran, E. M.; Journal of Paint Technology 4, 635 (1969).Google Scholar
9. Voncken, J. H. L., Lijzenga, C., Kumar, K. P., Keizer, K., Burggraaf, A. J., Bonekamp, B. C.; J. Mat. Sci. 27, 472478 (1992).Google Scholar
10. Scherer, G. W., Smith, D. M.; J. Non Cryst Solids 189 (1995).Google Scholar
11. Burgess, C. G. V., Everett, D. H.; J. Colloid. Interface Sci. 33, 611 (1970).Google Scholar
12. Cairncross, R. A., Schunk, P. R, Chen, K. S., Prakash, S. S., Samuel, J., Hurd, A. J.,Brinker, C. J.; Proceedings of the Society for Imaging Science and Techology (1996).Google Scholar
13. Brinker, C. J., Scherer, G. W; SOL-GEL SCIENCE (Academic Press 1990).Google Scholar
14. Garg, S.K., Nur, A.; J.Geophysical Research 78, 59115921(1973).Google Scholar
15. Kadlec, O., Dubinin, M. M.; J. Colloid Interface Sci. 31, 479 (1969).Google Scholar
16. Klein, J, Kumacheva, E; Science, 169, 816 (1995).Google Scholar