Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T07:17:41.603Z Has data issue: false hasContentIssue false

Potentialities of an Innovative Technique Like 129Xe NMR and of Saxs for the Characterization of Microporous Sol-Gel Derived SiO2

Published online by Cambridge University Press:  10 February 2011

L. C. de Menorval
Affiliation:
Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique (UMR 5618 CNRS) ENSCM, 8 Rue de l'Ecole Normale, 34 053 Montpellier cedex 1, France.
A. Julbe*
Affiliation:
Laboratoire des Matédés Membranaires (UMR 5635 CNRS-ENSCM-UM II), 8 Rue de l'Ecole Normale, 34 053 Montpellier cedex 1, France
H. Jobic
Affiliation:
Institut de Recherches sur la Catalyse (CNRS), 2 Avenue Albert Einstein, 69 626 Villeurbanne cedex, France
C. Guizard
Affiliation:
Laboratoire des Matédés Membranaires (UMR 5635 CNRS-ENSCM-UM II), 8 Rue de l'Ecole Normale, 34 053 Montpellier cedex 1, France
*
#To whom correspondence should be sent
Get access

Abstract

Addition of surfactants in TEOS derived sols leads to micro- or mesoporous materials whose porous texture can be varied by changing the surfactant quantity and/or chain length. This series of materials, with a relatively narrow pore size distribution, is well adapted to study the potentialities of an innovative characterization technique like 129Xe Nuclear Magnetic Resonance in comparison with Small Angle X-ray Scattering and N2 adsorption. SAXS revealed a high surface rugosity of the materials and a good correlation with pore hydraulic radius distributions measured by N2 adsorption. Using 129Xe NMR, we have studied the Xe chemical shifts (δXe,) as a function of pXe, and have pointed out several original results showing the importance, for microporous materials, of the NMR line shapes and of the slope of the lines δXe.=f(pXe).

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Earl, W. L., Kim, Y. W., Smith, D. M., in: Characterization of porous solids III, Studies in Surface Science and Catalysis vol.87, Edited by Rouquerol, J., Rodriguez-Reinoso, F., Sing, K. S. W. and Unger, K. K. (Elsevier Sci. Pub., Amsterdam, 1994), p. 301.Google Scholar
2 Ito, T., de Ménorval, L. C., Guerrier, E., Fraissard, J. P., Chem. Physics Letters 11(3), 271 (1984).Google Scholar
3 Ripmeester, J. A., Ratcliffe, I., J. Phys. Chem. 99, 619 (1995).Google Scholar
4 Fraissard, J., Ito, T., de Ménorval, L. C., in: Proc. 8th International Conference on Catalysis, Berlin, 1984, p.25.Google Scholar
5 Ripmeester, J. A., Davidson, D. W., J. Mol. Struct. 75, 67 (1981).Google Scholar
6 Fetter, G., Tichit, D., de Ménorval, L. C., Figueras, F., Applied Catalysis 65, L1–L4 (1990).Google Scholar
7 Stengle, T. R., Williamson, K. L., Macromolecules 20, 1420 (1987).Google Scholar
8 Ryoo, R., Pak, C., Ahn, D. H., de Mrnorval, L. C., Figueras, F., Catalysis Letters 7, 417 (1990).Google Scholar
9 Conner, W. C., Weist, E. L., Ito, T., Fraissard, J., J. Phys. Chem. 93,4138 (1989).Google Scholar
10 Terskikh, V. V., Mudrakovskii, I. L., Mastikhin, V. M., J. Chem. Soc. Faraday Trans. 89(23), 4239 (1993).Google Scholar
11 Cheung, T. T. P., J. Phys. Chem. 93, 7549 (1989).Google Scholar
12 Demarquay, J., Fraissard, J., J. Chem. Phys. Lett. 136, 314 (1987).Google Scholar
13 Julbe, A., Balzer, C., Barthez, J. M., Guizard, C., Larbot, A., Cot, L., J. Sol-gel Sci. and Technol. 4, 89 (1995).Google Scholar