Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-12T19:55:43.425Z Has data issue: false hasContentIssue false

Periodic Mesoporous Organosilicas (PMOs): Nanostructured Organic-Inorganic Hybrid Materials

Published online by Cambridge University Press:  01 February 2011

Tewodros Asefa
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
Neil Coombs
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
Ömer Dag
Affiliation:
Department of Chemistry, Bilkent University, 06533 Ankara, Turkey
Hiltrud Grondey
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
Mark J. MacLachlan
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
Geoffrey A. Ozin
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
Chiaki Yoshina-Ishii
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
Get access

Abstract

Lateral thinking in biomimetic materials chemistry has permitted chemists to create fascinating structures that mimic the biomaterials optimized by Nature. The integration of organic and inorganic chemistry at multiple length scales gives optimal performance characteristics to biomaterials, such as bone. In a similar fashion, lateral thinking in our lab has enabled us to consolidate the chemistry of inorganic surfactant-templated mesoporous materials with the organic-inorganic hybrid structure of amorphous xerogels. A new class of materials, periodic mesoporous organosilicas (PMOs), has emerged that marries organic and solid-state chemistry in the channels of hexagonally ordered mesoporous materials. Various organic and organometallic groups may be integrated into the framework, creating materials with novel, tunable properties. Surfactant can be solvent-extracted or ion-exchanged to create a high surface area PMO with the framework and the organic group intact. This renders the organic groups accessible for reaction to give a new type of “chemistry of the channels”.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pater, J. P. G., Jacobs, P. A., Martens, J. A., J. Catal.,, 184, 262 (1999).Google Scholar
2. Hata, H., Saeki, S., Kimura, T., Sugahara, Y., Kuroda, K., Chem. Mater.,, 11, 1110 (1999).Google Scholar
3. Raimondo, M., Perez, G., Sinibaldi, N., De Stefanis, A., Tomlinson, A. A. G., Chem. Commun.,, 1343 (1997).Google Scholar
4. Vartuli, J. C., Shih, S. S., Kresge, C. T., Beck, J. S., Mesoporous Molecular Sieves,, 117, 13 (1998).Google Scholar
5. Chomski, E., Dag, Ö., Kuperman, A., Coombs, N., Ozin, G. A., Chem. Vap. Deposition,, 2, 8 (1996).Google Scholar
6. MacLachlan, M. J., Aroca, P., Coombs, N., Manners, I., Ozin, G. A., Adv. Mater.,, 10, 144 (1998).Google Scholar
7. Antonelli, D. M., Ying, J. Y., Angew. Chem. Int. Ed. Engl.,, 35, 426 (1996).Google Scholar
8. Tian, Z.-R., Tong, W., Wang, J.-Y., Duan, N.-G., Krishnan, V. V., Suib, S. L., Science,, 276, 926 (1997).Google Scholar
9. Attard, G. S., Göltner, C. G., Corker, J. M., Henke, S., Templer, R. H., Angew. Chem. Int. Ed. Engl.,, 36, 1315 (1997).Google Scholar
10. Ciesla, U., Schacht, S., Stucky, G. D., Unger, K. K., Schüth, F., Angew. Chem. Int. Ed. Engl.,, 35, 541 (1996).Google Scholar
11. Braun, P. V., Osenar, P., Stupp, S. I., Nature,, 380, 325 (1996).Google Scholar
12. MacLachlan, M. J., Coombs, N., Ozin, G. A., Nature,, 397, 681 (1999).Google Scholar
13. Asefa, T., MacLachlan, M. J., Coombs, N., Ozin, G. A., Nature,, 402, 867 (1999).Google Scholar
14. Yoshina-Ishii, C., Asefa, T., Coombs, N., MacLachlan, M. J., Ozin, G. A., Chem. Commun.,, 2539 (1999).Google Scholar
15. Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., Terasaki, O., J. Am. Chem. Soc.,, 121, 9611 (1999).Google Scholar
16. Melde, B. J., Holland, B. T., Blanford, C. F., Stein, A., Chem. Mater.,, 11, 3302, (1999).Google Scholar
17. Asefa, T., MacLachlan, M. J., Grondey, H., Coombs, N., Ozin, G. A., Angew. Chem. Int. Ed. Engl.,, 112, 1878 (2000).Google Scholar
18. MacLachlan, M. J., Asefa, T., Ozin, G. A., Chem. Eur. J.,, 6, 2507 (2000).Google Scholar
19. Asefa, T., Yoshina-Ishii, C., MacLachlan, M. J., Ozin, G. A., J. Mater. Chem.,, 10, 1751 (2000).Google Scholar
20. Burkett, S. L., Sims, S. D., Mann, S., Chem. Commun.,, 1367 (1996).Google Scholar
21. Lim, M. H., Blanford, C. F., Stein, A., J. Am. Chem. Soc.,, 119, 4090 (1997).Google Scholar
22. Ozin, G. A., Chem. Commun.,, 419 (2000).Google Scholar