Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T08:16:04.105Z Has data issue: false hasContentIssue false

Pentacene Thin Film Transistors and Circuits: Influence of Processing and Device Design

Published online by Cambridge University Press:  01 February 2011

D. Knipp
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. A. Street
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
B. Krusor
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. HO
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

The influence of different dielectrics on the structural and electronic properties of pentacene films and TFTs is discussed. The pentacene films were thermally evaporated on inorganic dielectrics compatible with flexible substrates. A strong correlation between morphology and structural properties of the pentacene films and the mobility of the TFTs was observed for all the dielectrics studied. In the case of plasma enhanced chemical vapor deposited (PECVD) silicon nitride and silicon oxide dielectrics the growth of pentacene is mainly determined by the roughness of the dielectric. The roughness inhibits the ordering of pentacene molecules on the surface. However, by optimizing the fabrication process of the dielectrics, we have achieved similar pentacene mobilities on PECVD dielectrics and thermal oxide (0.4 cm2/Vs), without employing self-assembled monolayers like octadecyltrichlorosilane (OTS). An OTS treatment of oxide based dielectrics leads to an increase of the mobility by a factor of 2-3 up to >1cm2/Vs for thermal oxide. Pentacene films on inorganic dielectrics exhibit mobilities from of 0.2-1.2 cm2/Vs and high on/off ratios between 107 and 108.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schön, J.H., Berg, S. Kloc, Ch., Batlogg, B. Science 287, 1022–123 (2000).Google Scholar
2. Klauk, H. Gundlach, D. J. Nichols, J. A. Sheraw, C. D. Bonse, M. and Jackson, T. N. Solid State Technology 43 (3), 6377 (2000).Google Scholar
3. Dimitrakopolous, C.D. Purushothaman, S. Kymissis, J. Callegari, A. Shaw, J.M. Science, 283, 822 (1999).Google Scholar
4. Kelley, T.W. Muyres, D. Vogel, D. Baude, P. Dunbar, T. Boardman, L. Pellerite, M. Jones, T. Smith, T.P. imaps workshop, on Printing an Intelligent FutureGoogle Scholar
5. Knipp, D. Street, R.A. Krusor, B. Apte, R.B. Ho, J. SPIE Proc. 3366 820 (2001).Google Scholar
6. Schön, J. H., Batlogg, B. J. Appl. Phys, 89 (1), 336 (2001).Google Scholar
7. Street, R.A. Knipp, D. Völkel, A.R., Appl. Phys. Lett. 80, 1658 (2002).Google Scholar
8. Yang, Y. S. Kim, S. H. Lee, J-I, Chu, H. Y. Do, L-M., Lee, H. Oh, J. Zyung, T. Ryu, M. K. and Yang, M. S. Appl. Phys. Lett., 80, 1595, 2002 Google Scholar
9. Schön, J.H., Appl. Phys. Lett. 79, 4163 (2001).Google Scholar
10. Völkel, A.R., Street, R.A. Knipp, D. this conferenceGoogle Scholar
11. Jentsch, T. Juepner, H. J. Brzezinka, K.W. Lau, A. Thin Solid Films 315 273280 (1998).Google Scholar
12. Kamins, T. Polycrystalline silicon for integrated circuits, (Kluwer), 1998.Google Scholar
13. Seto, J.Y.W. J. Appl. Phys. 46, 5247 (1975)Google Scholar
14. Levinson, J. Shepherd, F. R. Scanion, P. J. Westwood, W. D. Este, G. and Rider, M. J. Appl. Phys. 53, 1193, 1982.Google Scholar