Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T21:01:54.519Z Has data issue: false hasContentIssue false

Parameters for Nitrogen Diffusion in Ni, Ti, and Al Obtained from Implanted Bilayers

Published online by Cambridge University Press:  25 February 2011

K. K. Bourdelle
Affiliation:
Nuclear Solid State Physics, Materials Science Centre, Groningen University, Nijen- borgh 4, 9747 AG Groningen, The Netherlands
D. O. Boerma
Affiliation:
Nuclear Solid State Physics, Materials Science Centre, Groningen University, Nijen- borgh 4, 9747 AG Groningen, The Netherlands
Get access

Abstract

Ni foils and samples consisting of bilayers of Ni or Fe on Al, Ti or Si were implanted at room temperature with 15N+ ions to fluences of around 1×l017 N/cm2. The concentration depth profiles of 15N were determined with nuclear reaction analysis before and after vacuum annealing. It was found that the penetrability for N atoms of the surface and the solid/solid interface plays an important role in the N redistribution during implantation or annealing. The formation of a nitride layer or nitride clusters in Ni and Fe was deduced. Parameters for N migration determined for the metals under investigation are discussed in terms of models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fromm, E. and Gebhardt, E., Gase und Kohlenstoff in Metallen (Springer-Verlag, Berlin, 1976).Google Scholar
[2] Binary Alloy Phase Diagrams, edited by Massalsky, T. B., Murray, J. L., Bennett, H. L., and Baker, H. (Am. Soc. for Metals, Ohio, 1986).Google Scholar
[3] Lappalainen, R. and Anttila, A., Appl Phys. A, 42, 263 (1987).Google Scholar
[4] de Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K.. Cohesion in Metals, Vol 1: Transition Metals and Alloys. (North-Holland, Amsterdam, 1988).Google Scholar
[5] Hahn, H. and Konrad, A., Z. Anorg. Alig. Chem. 264, 181 (1951).Google Scholar
[6] Anttila, A., Räisänen, J., and Keinonen, J., Appl Phys. Lett. 42, 498 (1983).Google Scholar
[7] Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry (Pergamon Press, Oxford, 1979).Google Scholar
[8] Terwagne, G. and Lucas, S., Surf. Coat. Technol. 51, 368 (1992).Google Scholar
[9] da Silva, J. R. G. and McLellan, R. B., Mat. Sci. Eng. 26, 83 (1986).Google Scholar
[10] Barin, I. and Knacke, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973).Google Scholar
[11] Boerma, D. O. and Corts, T., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E. and Follstaedt, D. M. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992) pp. 491496.Google Scholar
[12] Bourdelle, K. K. and Boerma, D. O., Nucl. Instr. and Meth. B, in press.Google Scholar
[13] Ion Beam Handbook for Material Analysis, eds. Mayer, J. W. and Rimini, E. (Academic Press, New York, 1977).Google Scholar
[14] Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Ranges of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
[15] Vredenberg, A. M., Perez-Martin, C. M., Custer, J. S., Boerma, D. O., de Wit, L., Saris, F. W., van der Pers, N. M., de Keijser, Th. H., and Mittemeijer, E. J., J. Mater. Res. 7, 2689 (1992).Google Scholar
[16] Elmi, P. D. and Unertl, W. N., J. Vac. Sci. Technol. A, 5, 1816 (1987).Google Scholar