Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T14:33:40.469Z Has data issue: false hasContentIssue false

Paramagnetic Nitrogen Defects in Silicon Nitride

Published online by Cambridge University Press:  22 February 2011

W. L. Warren
Affiliation:
Sandia National Laboratories, Glass and Electronic Ceramics Department Albuquerque, NM 87185
J. Kanicki
Affiliation:
Sandia National Laboratories, Glass and Electronic Ceramics Department Albuquerque, NM 87185
J. Robertson
Affiliation:
Sandia National Laboratories, Glass and Electronic Ceramics Department Albuquerque, NM 87185
E. H. Poindexte
Affiliation:
Sandia National Laboratories, Glass and Electronic Ceramics Department Albuquerque, NM 87185
Get access

Abstract

The photocreation mechanisms and properties of nitrogen dangling bonds in amorphous hydrogenated silicon nitride (a-SiNx:H) thin films are investigated. We find that the creation kinetics are strongly dependent on the post-deposition anneal; this thermal process can be described by a simple exponential function which yields an activation energy of 0.8 eV. The compositional dependence of the nitrogen dangling bond center suggests that its energy level lies close to the valence band edge, in agreement with theoretical calculations. This energy level position can explain why a-SiNx:H films often become conducting following a high post-deposition anneal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Ngai, K.L., and Hsai, Y., Appl. Phys. Lett., 50, 4190 (1970).Google Scholar
2) Arnett, P.C., and DiMaria, D.J., Appl. Phys. Lett., 27, 34 (1975).Google Scholar
3) Warren, W.L., Kanicki, J., Rong, F.C., and Poindexter, E.H., J. Electrochem. Soc, 139, 880 (1992).Google Scholar
4) Lenahan, P.M., Krick, D.T., and Kanicki, J., Appl. Surf. Sci., 39, 392 (1990).Google Scholar
5) Warren, W.L., Kanicki, J., Rong, F.C., Poindexter, E.H., and McWhorter, P.J., Appl. Phys. Lett., 61, 216 (1992).Google Scholar
6) Kanicki, J., Warren, W.L., Seager, C.H., and Lenahan, P.M., J. Non-Crystalline Solids, 137&138, 291 (1991).Google Scholar
7) Warren, W.L., Lenahan, P.M., and Curry, S.E., Phys. Rev. Lett., 65, 207 (1990).Google Scholar
8) Kanicki, J., and Wagner, P., Electrochem. Soc. Proc, 87–10, 261 (1987).Google Scholar
9) Jousse, D., and Kanicki, J., Appl. Phys. Lett., 55, 1112 (1989).Google Scholar
10) Robertson, J., Phil. Mag. B63, 47 (1990).Google Scholar
11) Roberston, J. and Powell, M. J., Appl. Phys. Lett., 44, 415 (1984).Google Scholar
12) Warren, W. L., Kanicki, J., Robertson, J., and Lenahan, P.M., Appl. Phys. Lett., 59, 1699 (1991).Google Scholar
13) Warren, W.L., Kanicki, J., McWhorter, P.J., and Poindexter, E.H., “The Physics and Technology of SiO2 and the Si/SiO2 Interface,” Helms, C.R. and Deal, B.E., editors (Plenum Press, NY 1992).Google Scholar
14) Warren, W.L., Kanicki, J., Rong, F.C., Buchwald, W.R., and Harmatz, M., Mat. Res. Soc. Symp. Proc, 242, 687 (1992).Google Scholar
15) Brown, T.L., and Lemay, H.E. Jr, “Chemistry the Central Science,” (Prentice Hall, Englewood Cliffs, NJ, 1981) p. 191.Google Scholar
16) Karcher, R., Ley, L., and Johnson, R.L., Phys. Rev. B30, 1876 (1984).Google Scholar
17) Stein, H.J., private communicationGoogle Scholar