Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T16:42:08.890Z Has data issue: false hasContentIssue false

Oxide and Metal Intercalated Clay Nanocomposites

Published online by Cambridge University Press:  25 February 2011

P. B. Malla
Affiliation:
Research and Development, Thiele Kaolin Company, P. 0. Box 1056, Sandersville, GA 31082
S. Komarneni
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Truly nanocomposite materials that are stable to about 400 to 700°C can be prepared by intercalating oxides or metal clusters of about 0.4 to 2.0 nm in between ∼1.0 nm layers of smectite clays. Both the chemistry and size of intercalates (pillars) can be varied to introduce unique catalytic, molecular sieving, dehumidifying and adsorption properties in these materials. The intercalated clays also provide opportunities to prepare compositionally and stoichiometrically diverse nanocomposite precursors to high temperature structural and electronic ceramics. Although montmorillonite is the most widely used host, further designing in properties can be achieved by using other members of smectite family having subtle crystal chemical and compositional variations, such as beidellite, nontronite, saponite or hectorite. The sol-gel chemistry involving the preparation of positively charged mono- or multiphasic solution-sol or colloidal-sol particles is a viable approach to introduce chemically diverse oxide particles in the interlayers of smectite. Reduction of transition metal ions or complexes in the interlayers of smectite to zerovalent metal clusters/particles using polar liquids is another novel approach to develop catalytically active, high surface area materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whittingham, M. S., in Intalation Chemistry, edited by Whittingham, M. S. and Jacobson, A. J. (Academic Press, New York, 1982), p. 1.Google Scholar
2. Kato, C., Memoirs of the School of Science and Engineering, Waseda Univ. 55, 41 (1991).Google Scholar
3. Mortland, M. M. and Raman, K. V., Clays Clay Miner. 16, 393 (1968).Google Scholar
4. Plee, D., Borg, F., Gatineau, L., and Fripiat, J. J., J. Am. Chem. Soc. 107, 2362 (1985).Google Scholar
5. Schutz, A., Stone, W. E. E., Poncelet, G., and Fripiat, J. J., Clays Clay Miner. 21, 167174 (1987).Google Scholar
6. Barrer, M. and MacLoed, D. M., Trans. Farad. Soc. 51, 12901300 (1955).Google Scholar
7. Brindley, G. W. and Sempels, R. E., Clay Miner. 12, 229236 (1977.Google Scholar
8. Yamanaka, S and Brindley, G. W.. Clays Clay Miner. 27, 119 (1979).Google Scholar
9. Sterte, J., Clays Clay Miner. 35. 658664(1986).Google Scholar
10 Yamanaka, S, Nishihara, T., Hattori, M.. Materials Chemistry Physics 17, 87101(1987).Google Scholar
11 Pinnavaia, T. J.. Izou, M., Landau, S. D., J. Am. Chem. Soc. 107,47834785 (1985).Google Scholar
12 Bellaoui, A., Plee, D. and Meriaudeau, P., Appl. Catal 63, 17 (1990).Google Scholar
13. Endo, T.. Mortland, M. M. and Pinnavaia, T. J., Clays Clay Miner. 29, 153156 (1981)Google Scholar
14 Lewis, R M. Ott, K. C.. and Santen, R. A. van. U.S. Patent No.4510257 (9 April 1985).Google Scholar
15. Moini, A. Pinnavaia, T. J, Solid State lonics 26. 119123 (1988).Google Scholar
16. Gonzalez, F, Pesquera, C. Blanco, C.. Benito, I.. and Mendioroz, S., Inorg. Chem. 31, 727–73 (1992).Google Scholar
17 Yamanaka, S, Nishihara, T., Hattori, M.. in Microstructure and Properties of Catalysts, edited by Treacy, M. M. J.. Thomas, J. M., and White, J. M. (Mater. Res. Som. Proc. 111. Pittsburgh. Pa, 1988) pp. 283288.Google Scholar
18 Ocelli, M L.. in Proc. Int. Clay Cont., edited by Schultz, L. G., Olphen, H. van, and Mumpton, F A (The Cla, Minerals Society, Bloomington IN, 1987). pp. 319323.Google Scholar
19. Sterte, J. and , Shabtai, J., Clays Clay miner. 35, 429 (1987).Google Scholar
20. Yamanaka, S. and Hattori, M., Catal. Today 2, 161 (1988).Google Scholar
21. Vaughan, D. E. W., Catal. Today 2, 187 (1988).Google Scholar
22. Tsvetkov, F. and Mingelgrin, U., Clays Clay Miner. 38, 380 (1990).Google Scholar
23. Malla, P. B., Yamanaka, S., and Komarneni, S., Solid State Ionics 32/33, 254 (1989).Google Scholar
24. Yamanaka, S., Malla, P., and Komarneni, S., J. Colloid. Interface Sci. 134, 51 (1990).Google Scholar
25. Malla, P. B. and Komarneni, S, Clays Clay Miner. 38, 363 (1990).Google Scholar
26. Malla, P. B. and Komarneni, S., Sci. Geol. Memoirs 86, 59 (1990).Google Scholar
27. Hrabe, Z., Komarneni, S., Malla, P. B., Srikanth, V., and Roy, R., J. Mater. Sci. 27,4614 (1992).Google Scholar
28. Zielke, R. C. and Pinnavaia, T. J., Clays Clay Miner. 36, 403 (1988).Google Scholar
29. Srinivasan, K. R., Folger, S. H., Clays Clay Miner. 38, 287 (1990).Google Scholar
30. Michot, L. J. and Pinnavaia, T. J., Clays Clay Miner. 39, 634 (1991).Google Scholar
31. Gu, B. and Doner, H. E., Clays Clay Miner. 38, 493 (1990).Google Scholar
32. Malla, P. B., Ravindranathan, P., Komarneni, S., and Roy, R., Nature 351, 555 (1991).Google Scholar
33. Malla, P. B., Ravindranathan, P., Komarneni, S., Breval, E., and Roy, R., J. Mater. Chem 2, 559 (1992).Google Scholar
34. Komarneni, S., Malla, P. B., Roy, R., High Performance Nanocomposite Desiccation Materials (Topical Report), Gas Research Instititute, 1992.Google Scholar
35. Malla, P. B. and Komarneni, S., Clays Clay Miner, in review (1992).Google Scholar
36. Yamanaka, S., Numata, K., and Hattori, H., in Proc. Int. Clay Conf., edited by Schultz, L. G., Olphen, H. van, and Mumpton, F. A. (The Clay minerals Society, Bloomington, Indiana, 1987), pp. 319-Google Scholar
37. Yamanaka, S. and Brindley, G. W., Clays Clay Miner. 26, 21 (1978).Google Scholar
38. Fievet, F., Lagier, J. P., Blin, B., Beaudon, B., and Figlarz, M., Solid State lonics 32/33, 198 (1989).Google Scholar
39. Horvath, G. and Kawazoe, K., J. Chem. Engg. Jpn. 16, 470 (1983).Google Scholar
40. Tennakoon, D. T. B., Jones, W., and Thomas, J. M., J. Chem Soc., Farad. Trans. I 82, 30813095 (1986).Google Scholar
41. Pinnavaia, T. J., Landau, S. D., Tzou, M., and Johnson, I. D., J. Am. Chem. Soc. 107, 72227224 (1985).Google Scholar
42. Colier, R. K., Cole, T. S., Lavan, Z., Advanved Desiccation Materials-Final Report (Gas Research Institute), Contract No. 5084–243-1089, 1986.Google Scholar
43. Zettlemoyer, A. C., Micale, F. J., and Klier, K., in Water. a Comprehensive Treatise, edited by Franks, F., vol 5, p. 249 (1975).Google Scholar
44. Fabri, B. and Dondi, M., Industrial Ceramics 11, 75 (1991).Google Scholar
45. Lee, J. G. and Cutler, I. B., Am Ceram. Soc. Bull. 58, 869 (1979).Google Scholar
46. Sugahara, Y., Kuroda, K., and Kato, C., J. Mater. Sci. 23, 3577 (1988).Google Scholar
47. Sing, K. S. W., Pure Appl. Chem 57, 603 (1985).Google Scholar
48. Curtis, A. C., duff, D. G., Edwards, P. P., Jefferson, D. A., Johnson, B. F. G., Kirkland, A. I., and Wallace, A. S., Angew. Chem., Int. Ed.. Engl. 27, 1530 (1988).Google Scholar
49 Artok, L., Schobert, H., Malla, P. B., Komarneni, S., Energy Fuels, in review (1992).Google Scholar
50. Vaughan, D. E. W., in Perspective in Molecular Science, edited by Flank, W. H. and Whyte, T. E. Jr., (Am. Chem. Soc. Symp. Ser. 368, Washington D. C., 1988), pp. 308323.Google Scholar
51. Roy, R., Science 238, 1664 (1987).Google Scholar
52. Brinker, C. J. and Scherrer, G. W., Sol-Gel Science. The Physics and Chemistry of Sol-Gel processing (Academic Press, New York, 1990), pp. 908.Google Scholar
53. Urabe, K., Kouno, N., Sakurai, H., and Izume, Y., Adv. Mater. 3, 558 (1991).Google Scholar
54. Jie, G. J., Ze, M. E., Zhiqing, Y., Eur. Pat. Appl. No. 197,012 (1986)Google Scholar
55. Sterte, J., Clays Clay Miner. 38, 609 (1990).Google Scholar