Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T08:54:25.019Z Has data issue: false hasContentIssue false

Optimization of SiGe Graded Buffer Defectivity and Throughput by Means of High Growth Temperature and Pre-Threaded Substrates

Published online by Cambridge University Press:  01 February 2011

Matthew Erdtmann
Affiliation:
merdtmann@amberwave.com, AmberWave Systems Corporation, 13 Garabedian Dr., Salem, NH, 03079, United States, 603-870-8668, 603-870-8608
Matthew T. Currie
Affiliation:
mcurrie@amberwave.com, AmberWave Systems Corporation, United States
Joseph C. Woicik
Affiliation:
woicik@bnl.gov, National Institute of Standards and Technology, United States
David Black
Affiliation:
david.black@nist.gov, National Institute of Standards and Technology, United States
Get access

Abstract

Dislocation glide kinetics dictate in relaxed graded buffers a fundamental opposition between the defectivity and throughput. For state-of-the-art Si-based applications, the trade-off between defect level and wafer cost (inversely related to throughput) has made the insertion of SiGe graded buffers into production difficult. We aim to mitigate the trade-off by reporting two advances that enable simultaneous improvements in both defectivity and throughput. The first is use of a high growth temperature to allow very fast dislocation glide velocities and growth rates as high as 1.0 μm/min. The second is the use of “pre-threaded” Si substrates, substrates with an elevated density of threading dislocations. By having dislocation nucleation controlled by uniformly distributed substrate threading dislocations, instead of unpredictable heterogeneous sources, impediments to dislocation glide, such as dislocation bundles and pile-ups, are reduced. By incorporating both advances into SiGe graded buffer epitaxy, dislocation pile-up densities are reduced by nearly three orders of magnitude, threading dislocation densities are reduced by a factor of 7.4×, and wafer throughput is increased at least 33%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T., and Lochtefeld, A., J. Appl. Phys. 97, 011101–1 (2005).10.1063/1.1819976Google Scholar
2. Groenert, M. E., Leitz, C. W., Pitera, A. J., Yang, V., Lee, H., Ram, R. J., and Fitzgerald, E. A., J. Appl. Phys. 93, 362 (2003).10.1063/1.1525865Google Scholar
3. Alles, M. L., Wilson, S. R., Hovel, H. J., Maszara, W. P., and Dolan, R. P., 1997 IEEE International SOI Conference, Yosemite, CA, 128. IEEE, Piscataway, NJ (1997).Google Scholar
4. Eneman, G., Simoen, E., Delhougne, R., Verheyen, P., Loo, R., and De Meyer, K., Appl. Phys. Lett. 87, 192112–1 (2005).10.1063/1.2128490Google Scholar
5. Andre, C. L., Boeckl, J. J., Wilt, D. M., Pitera, A. J., Lee, M. L., Fitzgerald, E. A., Keyes, B. M., and Ringel, S. A., Appl. Phys. Lett. 84, 3447 (2004).10.1063/1.1736318Google Scholar
6. Watson, G. P., Fitzgerald, E. A., Xie, Y. H., and Monroe, D., J. Appl. Phys. 75, 263 (1994).10.1063/1.355894Google Scholar
7. Fitzgerald, E. A., Kim, A. Y., Currie, M. T., Langdo, T. A., Taraschi, G., and Bulsara, M. T., Mater. Sci. Eng. B67, 53 (1999).10.1016/S0921-5107(99)00209-3Google Scholar
8. Other less expensive implant and anneal alternatives to SIMOX are possible that still yield an elevated, uniform substrate TDD. See, e.g., Watson, G. P., Fitzgerald, E. A., Xie, Y. H., Silverman, P. J., White, A. E., and Short, K. T., Appl. Phys. Lett. 63, 746 (1993).10.1063/1.109923Google Scholar
9. Fitzgerald, E. A., Xie, Y. H., Monroe, D., Silverman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A., and Weir, B. E., J. Vac. Sci. Technol. B 10, 1807 (1992).10.1116/1.586204Google Scholar
10. Fitzgerald, E. A., J. Vac. Sci. Technol. B 7, 782 (1989).10.1116/1.584600Google Scholar
11. Samavedam, S. B. and Fitzgerald, E. A., J. Appl. Phys. 81, 3108 (1997).10.1063/1.364345Google Scholar
12. Leitz, C. W., Currie, M. T., Kim, A. Y., Lai, J., Robbins, E., Fitzgerald, E. A., and Bulsara, M. T., J. Appl. Phys. 90, 2730 (2001).10.1063/1.1389333Google Scholar
13. Barnett, S. J., Keir, A. M., Cullis, A. G., Johnson, A. D., Jefferson, J., Smith, G. W., Martin, T., Whitehouse, C. R., Lacey, G., Clark, G. F., Tanner, B. K., Sprikl, W., Lunn, B., Hogg, J. C. H., Ashu, P., Hagston, W. E., and Castelli, C. M., J. Phys. D: Appl. Phys. 28, A17 (1995).10.1088/0022-3727/28/4A/003Google Scholar
14. Köhler, R., Raidt, H., Neumann, W., Pfeiffer, J. U., Schäfer, H., and Richter, U., J. Phys. D: Appl. Phys. 38, 319 (2005).10.1088/0022-3727/38/2/017Google Scholar
15. Goorsky, M. S., Feichtinger, P., Fukuto, H., and U'Ren, G., Phil. Trans. R. Soc. Lond. A 357, 2777 (1999).10.1098/rsta.1999.0465Google Scholar
16. Ferrari, C., Rossetto, G., and Fitzgerald, E. A., Mater. Sci. Eng. B91–92, 437 (2002).10.1016/S0921-5107(01)00994-1Google Scholar
17. Freund, L. B., J. Appl. Phys. 68, 2073 (1990).10.1063/1.346560Google Scholar