Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T14:49:16.721Z Has data issue: false hasContentIssue false

Optical Properties and Phase Transformation Kinetics of Ge-Sb-Te-(N) Alloy Thin Films Investigated by Ellipsometry

Published online by Cambridge University Press:  01 February 2011

Sang Youl Kim*
Affiliation:
Department of Molecular Science and Technology, Ajou University Suwon, Korea442–749
Get access

Abstract

The recent research works of optical properties and crystallization kinetics of phase change Ge-Sb-Te-(N) alloy by using ellipsometry are reviewed.

The complex refractive index spectra of phase-change Ge2Sb2+xTe5 thin films and those of the nitrogen Ge2Sb2Te5 thin films have been determined.

The crystallization behavior of amorphous Ge2Sb2Te5 thin films investigated by in situ ellipsometry revealed that the crystallization process of Ge2Sb2Te5 near 140°C is a two-step process. The kinetic exponent of the Johnson-Mehl-Avrami equation was about 4.4 for the first stage and 1.1 for the second stage. Ex situ study confirmed the cascaded crystallization behavior of phase-change Ge2Sb2Te5 films.

A passive type single wavelength ellipsometer adopting a DOAP (division-of-amplitude photopolarimeter) configuration with nanosecond time resolution is developed to monitor the phase transformation of Ge2Sb2Te5 caused by a high power nanosecond laser pulse in real time. The two-step process - the fast nucleation-dominant stage followed by the slow anomalous grain growth stage is confirmed.

Based on the recent analysis of the ellipsometric isotherm at moderately elevated temperature, we found for the first time that the fast nucleation dominant crystallization of Ge2Sb2Te 5 can be better explained by a modified JMA equation that illustrates the nucleation dominated process where the creation rate of a new nucleus is proportional to the density of preexisting nuclei and growth rate is negligible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ide, T., Suzuki, M., and Okada, M., Jpn. J. Appl. Phys. 34 part 2(4B), L529 (1995).Google Scholar
2. Bruneau, J.M., Bechvet, B., Valon, B., and Butaud, E., Optical Data Storage Topical Meeting 104 (1997).Google Scholar
3. Chen, M., Rubin, K. A. and Barton, R. W., Appl. Phys. Lett. 49, 502 (1986)Google Scholar
4. Ohta, T., Uchida, M., Yoshioka, K., Furukawa, S. and Tamura, R., Proc. Soc. Photo-Opt. Inst. Eng., Tech. Dig. Series 1, 14 (1989).Google Scholar
5. Ohta, T., Tech. Dig. Series 5, Optical Data Storage'91 84 (1991).Google Scholar
6. Kojima, R., Okabayashi, S., Kashihara, T., Horai, K., Matsunaga, T., Ohno, E., Yamada, N. and Ohta, T., Jpn. J. Appl. Phys. 37, 2098 (1998).Google Scholar
7. Kim, M. R., Seo, H., Jung, T. H., Park, J. W. and Yeon, C., Proc. SPIE 3401, 259 (1998).Google Scholar
8. Gonzalez-Hemandez, J., chao, B.S., strand, D., Ovshinsky, S.R., Pawlik, D., and Gasiorowiski, P., Appl. Phys. Commun. 11, 557 (1992).Google Scholar
9. Yongjun, W., Ting, Z.T. and Chong, C.T., Technical Digest of Int. Symp. on Optical Memory 102 (1998).Google Scholar
10. Trappe, C., Bechevet, B., Hyot, B., Fascko, S. and Kurz, H., Joint Int. Symp. on Optical Memory and Optical Data Storage 273 (1999).Google Scholar
11. Hurst, T. and Khulbe, P., Joint Int. Symp. on Optical Memory and Optical Data Storage 220 (1999).Google Scholar
12. Khulbe, P. K., Xun, X. and Mansuripur, M., Joint Int. Symp. on Optical Memory and Optical Data Storage 211 (1999).Google Scholar
13. Jeong, T. H., Kim, M. R., Seo, H., Kim, S. J. and Kim, S. Y., J. Appl. Phys. 86, 774 (1999).Google Scholar
14. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. and Takao, M., J. Appl. Phys., 69(5), 2849 (1991).Google Scholar
15. Kojima, R., Okabayashi, S., Kashihara, T., Horail, K., Matshunaga, T., Ohno, E., Yamada, N. and Ohta, T., Joint MORIS/ISOM'97, Yamagata, Japan 292 (1997).Google Scholar
16. Kim, M. R., Seo, H., Jung, T. H., Park, J. W. and Yeon, C., Optical Dsta Storage, Colorado, USA, PD52 (1998).Google Scholar
17. Christian, J.W., Theory of transformations in metals and alloys, 2nd ed., Ch.12 (Pergamon Press, New York, (1975).Google Scholar
18. Azzam, R. M. A., Optica Acta 29(5), 491 (1982).Google Scholar
19. Xun, X., Erwin, J. K., Bletsher, W., Choi, J., Kallenbach, S., and Mansuripur, M., Appl. Opt. 40, 635 (2002).Google Scholar
20. Shi, L.P., Chong, T. C., Yao, H. B., Hu, X., and Miao, X. S., Joint Int. Symp. Optical Memory and Optical Data Storage 317 (2002).Google Scholar
21. An, S.H., Kim, D., Kim, S.Y., Jpn. J. Appl. Phys. 41(12), 7400 (2002).Google Scholar
22. Rossow, U., Thin Solid Films 313–314, 97 (1998).Google Scholar
23. Nee, S. F. and Cole, T., Thin Solid Films 313–314, 90 (1998).Google Scholar
24. Kim, S.J. and Kim, S.Y., 3rd Int. Conf. Spectroscopic Ellipsometry, Vienna, Austria, TuPH09 (2003).Google Scholar