Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T13:12:23.917Z Has data issue: false hasContentIssue false

Optical and Electrical Properties of TiO2 Nanotubes Grown by Titanium Anodization

Published online by Cambridge University Press:  31 January 2011

Yahya Alivov
Affiliation:
yahya.alivov@ttu.edu, Texas Tech University, Lubbock, Texas, United States
Vladimir Kuryatkov
Affiliation:
VLADIMIR.KURYATKOV@tt.edu, Texas Tech University, Lubbock, Texas, United States
Mahesh Pandikunta
Affiliation:
mahesh.pandikunta@ttu.edu, Texas Tech University, Lubbock, Texas, United States
Gautam Rajanna
Affiliation:
gautam.rajana@ttu.edu, Texas Tech University, Lubbock, Texas, United States
Daniel Johnstone
Affiliation:
djohnstone@semetrol.com, SEMETROL, Chesterfield, Virginia, United States
Ayrton Bernussi
Affiliation:
ayrton.bernusi@ttu.edu, Texas Tech University, Lubbock, Texas, United States
Sergey A Nikishin
Affiliation:
sergey.a.nikishin@ttu.edu, Texas Tech University, Lubbock, Texas, United States
Z. Y. Fan
Affiliation:
zhaoyang.fan@ttu.edu, Texas Tech University, Lubbock, Texas, United States
Get access

Abstract

In this work we investigated the structural, electrical, and optical properties of titanium dioxide (TiO2) nanotubes (NTs) formed by electrochemical anodization of Ti metal sheets in NH4F+glycerol electrolyte at different anodization voltages (Va) and acid concentrations. Our results revealed that TiO2 NTs can be grown in a wide range of anodization voltages from 10 V to 240 V. The maximum NH4F acid concentration, at which NTs can be formed, decreases with the anodization voltage, which is 0.7% for Va<60V, and decreases to 0.1% at Va =240 V. Glancing angle X-ray diffraction (GAXRD) experiments show that as-grown amorphous TiO2 transforms to anatase phase after annealing at 400 oC, and further transforms to rutile phase at annealing temperatures above 500 oC. Samples grown in 30-120 voltage range have higher crystal quality as seen from anatase (101) peak intensity and reduced linewidth. The electrical resistivity of the NTs varies with Va concentration and increases by eight orders of magnitude when Va increases from 10 V to 240 V. This is consistent with cathodoluminescense studies which showed improved optical properties for samples grown in this voltage range. Optical properties of samples were also studied by low temperature photoluminescence. Temperature dependent I-V and photo-induced current transient spectroscopy were employed to analyze electrical properties and defect structure on NT samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Zwilling, V. Aucouturier, M. Darque-Ceretti, E., Electrochim. Acta 45, 921(1991)Google Scholar
2 Mor, Gopal K. Varghese, Oomman K. Paulose, Maggie, Shankar, Karthik, Grimes, Craig A. Solar Energy Materials & Solar Cells 90, 2011(2006)Google Scholar
3 Grimes, Craig A. Varghese, Oomman K. and Ranjan, Sudhir Light, Water, Hydrogen The Solar Generation of Hydrogen by Water Photoelectrolysis. Springer, 2008.Google Scholar
4 Gong, D. Grimes, C.A. Varghese, O.K. Hu, W. Singh, R.S. Chen, Z. Dickey, E.C. J. Mater. Res. 16, 3331(2001)Google Scholar
5 Macak, Jan M. Schmuki, Patrik, Electrochimica Acta 52, 1258(2006)Google Scholar
6 Macak, J. M. Hildebrand, H. Marten-Jahns, U., Schmuki, P. Journal of Electroanalytical Chemistry 621, 254266 (2008)Google Scholar
7 Alivov, Yahya, Pandikunta, Mahesh, Nikishin, Sergey, and Fan, Z. Y. Nanotechnology Nanotechnology 20, 225602(2009)Google Scholar
8 Macak, J.M. Hildebrand, H. Marten-Jahns, U., Schmuki, P. Journal of Electroanalytical Chemistry 621, 254(2008)Google Scholar
9 Cai, Q. Paulose, M. Varghese, O. K. and Grimes, C. A. J. Mater. Research 20, 230(2005)Google Scholar
10 Nishijima, Kazumoto, Fujisawa, Yuichi, Murakami, Naoya, Tsubota, Toshiki, Ohno, Teruhisa Applied Catalysis B: Environmental 84, 584(2008)Google Scholar
11 Chen, Xiuqin, Zhang, Xingwang, Su, Yaling, Lei, Lecheng, Applied Surface Science 254, 6693(2008)Google Scholar
12 Na Lu, Huimin Zhao, Jingyuan Li, Xie Quan, Chen, Shuo, Separation and Purification Technology 62, 668(2008)Google Scholar
13 Sun, Haijian, Liu, Huiling, Ma, Jun, Wang, Xiangyu, Wang, Bin, Han, Lei, Journal of Hazardous Materials 156, 552(2008)Google Scholar
14 Hosaka, N., Sekiya, T., Kurita, S., J. Luminescence 72-74, 874875 (1997)Google Scholar
15 Tang, H., Berger, H. Schmid, P.E. and Levy, F. Solid State Communications 87, 847850 (1993)Google Scholar
16 Bieber, Herrade, Gilliot, Pierre, Gallart, Mathieu, Keller, Nicolas, Keller, Valerie, Bégin-Colin, Sylvie, Pighini, Catherine, Millot, Nadine, Catalysis Today 122, 101108 (2007)Google Scholar
17 Vanheusden, K. Warren, W.L. Seager, C.H. Tallant, D.R. Voigt, J.A. Gnade, B.E. J. Appl. Phys. 79 7983 (1996)Google Scholar
18 Gu, F. Wang, S.F. Lu, M.K. Zhou, G.J. Xu, D. Yuan, D.R. J. Phys. Chem. B108 8119 (2004)Google Scholar
19 Pan, D.C. Zhao, N.N. Wang, Q., Jiang, S. Ji, X. An, L. Adv. Mater. 17, 1991 (2005)Google Scholar
20 Suisalu, A. Aarik, J. Ma'Endar, H., Sildos, I. Thin Solid Films 336, 295 (1998)Google Scholar
21 Lai, Y.K. Sun, L. Chen, C. Nie, C.G. Zuo, J. Lin, C.J. Applied Surface Science 252, 1101(2005)Google Scholar
22 Munoz, A.G. Electrochimica Acta 52, 4167(2007)Google Scholar
23 Nowotny, M. K. Bak, T. Nowotny, J. and Sorrel, C. C. Phys. Stat. Solidi (b) 242, R88 (2005)Google Scholar