Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T01:23:50.894Z Has data issue: false hasContentIssue false

Multilayered Metallic Thin Films Prepared by Dual-Bath Electrodeposition

Published online by Cambridge University Press:  28 February 2011

C.A. Ross
Affiliation:
Harvard University, Division of Applied Sciences, McKay Laboratory, Oxford St., Cambridge, MA 02138
L.M. Goldman
Affiliation:
Harvard University, Division of Applied Sciences, McKay Laboratory, Oxford St., Cambridge, MA 02138
F. Spaepen
Affiliation:
Harvard University, Division of Applied Sciences, McKay Laboratory, Oxford St., Cambridge, MA 02138
Get access

Abstract

Electrodeposition is a fast and relatively inexpensive method for making metal multi-layered films. We present a dual bath electrodeposition technique capable of producing crystalline Ni/amorphous NiPx multilayers with repeat lengths of 20Å and above, of sufficient quality to give several low-angle x-ray reflections. The compositional and structural modulations of the films are analysed using x-ray diffraction and microscopy, and the effects of deposition parameters, such as the current density, are examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Yahalom, J. and Zadok, O., J. Mat. Sci. 22 499 (1987)Google Scholar
2Lashmore, D. S. and Dariel, M. P., J. Electrochem. Soc.: Solid-State Sci. Technol. 135 (5)1218 (1988)Google Scholar
3Tench, D. and White, J., Metall. Trans. A 15A 2039 (1984)Google Scholar
4Menezes, S. and Anderson, D. P., J. Electrochem. Soc., in pressGoogle Scholar
5Menezes, S., in Proc. 7th Australian Electrochemistry Conference, Kensington, New South Wales, Australia, Feb. 1988, ed. Iran, T. and Skyllas-Kazakos, M., 79, pub. Royal Australian Chemical Institute, Electrochemistry Division, AustraliaGoogle Scholar
6Weil, R., Nee, C. C. and Chang, J. W., Metall. Trans. A 19A 1569 (1988)Google Scholar
7Cohen, U., Coch, F. B. and Sard, R., J. Electrochem. Soc: Electrochem. Sci. Technol. 130 (10)1987 (1983)Google Scholar
8Nee, C. C., Kim, W. and Weil, R., J. Electrochem. Soc: Electrochem. Sci. Technol. 135 (5)1100 (1988)Google Scholar
9Blanpain, B., M.S. Thesis, Katholíeke Universiteίt Leuven, Belgium (1985)Google Scholar
10Goldman, Lee M., Blanpain, B. and Spaepen, Frans, J. Appl. Phys. 60 (4)1374 (1986)Google Scholar
11Goldman, Lee M., Ohashi, W. and Spaepen, Frans, U.S. Patent 4, 781, 800, Nov. 1st 1988Google Scholar
12Goldman, L. M., Ross, C. A., Ohashi, W., Wu, D. and Spaepen, F., Appl. Phys. Lett., in press, Nov. 1989Google Scholar
13Wood, W. G., ed., Metals Handbook Ninth Edition, vol. 5, American Society for Metals, Ohio (1982), 199 (for Ni), 159 (for Cu)Google Scholar
14Brenner, A., Electrodeposition of alloys: principles and practice (Academic, New York) 1963Google Scholar
15Cargill III, G. S., Ph.D. Thesis, Harvard University (1969)Google Scholar
16Safranek, W. H., The properties of electrodeposited metals and alloys, 2ndEd., American Elec- troplaters and Surface Finishers Society, Orlando, Florida (1986)Google Scholar
17Cargill, G. S. III, J. Appl. Phys. 41 (1)12 (1970)Google Scholar
18Lashmore, D. S. and Weinroth, J. F., Plat. Surf. Fin. 72 72 (1982)Google Scholar
19Sugawara, M., Kondo, M., Yamazaki, S. and Nakajima, K., Appl. Phys. Lett. 52 (9)742 (1988)Google Scholar
20Barbee, T. W., Optical Eng. 25 (8)898 (1986)Google Scholar