Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T06:01:32.027Z Has data issue: false hasContentIssue false

A molecular dynamics investigation on grain disappearance at a triple junction in polycrystalline silicon

Published online by Cambridge University Press:  21 March 2011

Alessandra Satta
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università di Cagliari Cittadella Universitaria, I-09042, Monserrato - Cagliari, Italy
Luciano Colombo
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università di Cagliari Cittadella Universitaria, I-09042, Monserrato - Cagliari, Italy
Fabrizio Cleri
Affiliation:
Ente Nuove Tecnologie, Energiae Ambiente, Divisione Materiali, Centro Ricerche Casaccia, CP 2400, I-00100 Roma, Italy, and Istituto Nazionale per la Fisica della Materia, Roma, Italy
Get access

Abstract

Topological changes in microstructure are strictly related to the microscopic evolution of triple junctions (TJ). The three-sided grain disappearance, usually called T2 process, is here investigated via 3D-atomistic modeling. In particular the stability of a three-sided grain insertion in a triple junction in silicon is studied within the framework of Molecular Dynamics simulations. The Stillinger-Weber interatomic potential is adopted and constant-traction border conditions are considered to ensure a proper embedding of the atomistic region in a virtually infinite bulk continuum. Dealing with the T2-event, the critical radius below which the three- sided inner grain become unstable is evaluated to be three to four times the lattice constant of silicon. Moreover, we show that the instability sets in through the amorphization of the central shrinking grain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Costantini, S., Alippi, P., Colombo, L. and Cleri, F., Phys. Rev. B 63, 221 (2001).Google Scholar
2. Bollman, W., Phil. Mag., A 49, 73 (1984); Phil. Mag., A 57, 637 (1989).Google Scholar
3. Palumbo, G. et al. , Scripta Met. Mat., 24, 1347 (1990).Google Scholar
4. Czubayko, U. et al. , Acta Mat., 46, 5863 (1989).Google Scholar
5. Gottstein, G., King, A. H. and Shvindlerman, L. S., Acta Mat., 48, 397 (2000).Google Scholar
6. Ashby, R. and Verrall, A.S., Acta Metall., 81, 213 (1973).Google Scholar
7. Satta, A., Colombo, L. and Cleri, F., to appear in Mat. Res. Soc. Proc., (2000)Google Scholar
8. Schoenfelder, B., Phillpot, S. R., Wolf, D. and Gleiter, H., Interf. Sci. 7, 44 (1999).Google Scholar
9. Keblinski, P., Phillpot, S. R., Wolf, D. and Gleiter, H., J. Am. Chem. Soc. 80, 717 (1997); Acta Mat. 44, 344(1998).Google Scholar
10. d'Anterroches, C. and Bourret, A., Phil. Mag., A 49, 783 (1984).Google Scholar
11. Garg, A., Clarck, W. A. T. and Hirth, J. P., Phil. Mag., A 59, 479 (1989).Google Scholar
12. Batstone, J. L., Phil. Mag., B 63, 1037 (1991).Google Scholar
13. Srinivasan, S. G., Cahn, J. W., Jonsson, H., Kalonji, G., Acta Mat. 47, 2821 (1999).Google Scholar
14. Cleri, F., Phillpot, S. R., Yip, S. and Wolf, D., J. Am. Cer. Soc., 81, 543 (1998).Google Scholar
15. Stillinger, F.A., Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar