Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T18:11:26.359Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxy of Rubidium Barium Bismuth Oxide: Structural Phenomena in Perovskite Heteroepitaxy

Published online by Cambridge University Press:  28 February 2011

E. S. Hellman
Affiliation:
A. T. & T. Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
E. H. Hartford
Affiliation:
A. T. & T. Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
D. J. Werder
Affiliation:
A. T. & T. Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R. M. Fleming
Affiliation:
A. T. & T. Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

The simple cubic perovskite crystal structure of superconducting (Rb,Ba)BiO3 makes it an ideal system for the study of perovskite heteroepitaxy. We report novel growth phenomena which have been observed in (Rb,Ba)BiO3 films grown by molecular beam epitaxy (MBE). For growth on MgO, the orientation of the film is observed to depend on the substrate temperature during growth, changing from (1 1 0) to (1 0 0) with increasing temperature. For films on SrTiO3, the large (10%) lattice mismatch appears to cause small grain rotations, resulting in a film with many low angle grain boundaries. In at least one growth regime, (2 2 1) oriented grains nucleate and grow on Ʃ3 coincidence boundaries on a faceted (1 0 0) oriented film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mattheiss, L. F., Gyorgy, E. M. and Johnson, D. W. Jr., Phys. Rev. B 31, 3745 (1988).Google Scholar
2 Cava, R. J., Batlogg, B., Krajewski, J. J., Farrow, R., Rupp, L. W. Jr., White, A. E., Short, K., Peck, W. F. and Kometani, T., Nature 332, 814 (1988).Google Scholar
3 Hellman, E. S., Hartford, E. H. and Fleming, R. M., Appl. Phys. Lett, in press (1989).Google Scholar
4 Spah, R. J., Hess, H. F., Stormer, H. L., White, A. E. and Short, K. T., Appl. Phys. Lett 53, 441 (1988).Google Scholar
5 Klemm, W. and Scharf, H. J., Z. Anorg. Allg. Chem. 303, 263 (1960).Google Scholar
6 Schwedes, B. and Hoppe, R., Z. Anorg. Allg. Chemie 222, 97 (1972).Google Scholar
7 Levin, E. M. and Roth, R. S., J. Res. Nat. Bur. Stand. 68A, 197 (1964).Google Scholar
8 Enomoto, Y., Murakami, T. and Moriwaki, K., Jpn. J. Appl. Phys. 28, L1355 (1989). These authors report lattice spacings for Ba1.xKxBiO3 films in the range x>0.5 which fit well to K02.0.5+which+fit+well+to+K02.>Google Scholar
9 B. Aurivillius, Ark. Kemi, Mineral, o. Geol. 16A, 1 (1943). .Google Scholar
10 Scholder, R., Ganter, K. W., Glaser, H. and Merz, G., Z. Anorg. Allg. Chem. 319, 375 (1963)..Google Scholar
11 Kourtakis, K. and Robbins, M., Mat. Res. Bull. 24, 1287 (1989).Google Scholar
12 Shirakawa, Y. and Kobayashi, M., Jpn. J. Appl. Phys. 22, L1405 (1989).Google Scholar
13 Suzuki, M. and Murakami, T., J. Appl. Phys 56, 2330 (1984).Google Scholar
14 Matthews, J. W., in Epitaxial Growth. Part B.Matthews, J. W., Ed. (Academic Press, New York, 1975), p. 566.Google Scholar