Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T23:00:34.464Z Has data issue: false hasContentIssue false

Models and Mechanisms of III-V Compound Semiconductor Growth by Movpe

Published online by Cambridge University Press:  28 February 2011

Klavs F. Jensen
Affiliation:
Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis, MN 55455
Triantafillos J. Mountziaris
Affiliation:
Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis, MN 55455
Dimitrios I. Fotiadis
Affiliation:
Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis, MN 55455
Get access

Abstract

A kinetic model for metalorganic vapor phase epitaxy (MOVPE) of GaAs from trimethylgallium and arsine is imbedded into two-dimensional transport phenomena descriptions of horizontal and vertical MOVPE reactors. The mechanism involves 15 gas-phase species, 17 gas-phase reactions, 9 surface species and 26 surface reactions. The surface reactions take into account different crystallographic orientations of the GaAs substrate. Carbon incorporation is predicted to occur via carbene containing species. A sensitivity analysis shows that only a few reactions are needed to simulate observed growth rates while the full mechanism is important in computing carbon levels in GaAs. The model predictions are in good agreement with data for trimethylgallium decomposition in hot isothermal tubes, with GaAs growth in horizontal reactors, and with carbon incorporation in vertical reactors. The transport-reaction model demonstrates that both gas-phase and surface reactions as well as transport phenomena are important in predicting MOVPE reactor performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuech, T.F., Mat. Sci. Rep. 2, 1 (1987).Google Scholar
2. Watanabe, N., Nakanisi, T., and Dapkus, P.D., Proc. Fourth Int. Conf. on Metalorganic Vapor Phase Epitaxy, J. Crystal Growth 93, (1988).Google Scholar
3. Jensen, K.F., in Microelectronics Processing: Chemical Engineering Aspects, edited by Hess, D.W. and Jensen, K.F. (Advances in Chemistry Series 221, 1989).Google Scholar
4. Larsen, C.A., Buchan, N.I., and Stringfellow, G.B., Appl. Phys. Lett. 52, 480 (1988).Google Scholar
5. Dapkus, P. D., DenBaars, S. P., Chen, Q., and Maa, B.Y., in Mechanisms of Reactions of Metalorganic Compounds with Surface, edited by Cole-Hamilton, D. (NATO Adv. Study Inst., 1989).Google Scholar
6. DenBaars, S.P, Maa, B.Y., Dapkus, P.D., Danner, A.D., and Lee, H.C., J. Crystal Growth 77, 188 (1986).Google Scholar
7. Luickerath, R., Tommack, P., Hertling, A., Koss, H.J., Balk, P., Jensen, K.F., and Richter, W., J. Crystal Growth 93, 151 (1988).Google Scholar
8. Butler, J.E., Bottka, N., Sillmon, R.S., and Gaskill, D.K., J. Crystal Growth 77, 163 (1986).CrossRefGoogle Scholar
9. Gaskill, D.K., Kolubayev, V., Bottka, N., Sillmon, R.S., and Butler, J.E., J. Crystal Growth 93, 127 (1988).Google Scholar
10. Nishizawa, J., Kurabayashi, T., Abe, H., and Nozoe, A., Surface Science 185, 249 (1987).Google Scholar
11. Aspnes, D.E., Colas, E., Studna, A.A., Bhat, R., Koza, M.A., and Keramidas, V.G., Phys. Rev. Lett. 61, 2782 (1988).CrossRefGoogle Scholar
12. Robertson, A. Jr, Chiu, T.H., Tsang, W.T., and Cunningham, J.E., J. Appl. Phys. 64, 877 (1988).Google Scholar
13. Mountziaris, T.J. and Jensen, K.F., in Chemical Perspectives of Microelectronic Materials, edited by Gross, M.E., Yates, J.T., and Jasinski, J. (Proc. Mat. Res. Soc. 131, 1989).Google Scholar
14. Tirtowidjodjo, M. and Pollard, R., J. Crystal Growth 77, 200 (1986).CrossRefGoogle Scholar
15. Tirtowidjodjo, M. and Pollard, R., J. Crystal Growth 93, 108 (1988).Google Scholar
6. Colhrin, M.E. and Kee, R.J., this proceedings volume.Google Scholar
17. Moffat, H.K., T.F. Kuech, Jensen, K.F., and Wang, P.J., J. Crystal Growth 93, 594 (1988).Google Scholar
18. Bird, R. B., Stewart, W.E., and Lightfoot, E. N., Transport Phenomena (Wiley, New York, 1960).Google Scholar
19. Dixon-Lewis, G., in Combustion Chemistry Edited by Gardiner, C.W. Jr, (Springer Verlag, New York, 1984).Google Scholar
20. Zienkiewicz, O.C., The Finite Element Method, 3rd Ed. (McGraw-Hill, New York, 1977).Google Scholar
21. Jensen, K.F., D.I. Fotiadis, McKenna, D.R. and Moffat, H.K., Am. Chem. Soc. Symp. Ser. 353, 353 (1987).Google Scholar
22. Opdorp, C. van and Leys, M.R., J. Crystal Growth 84, 271 (1987).Google Scholar
23. Visser, E.P., Klein, C.R., Govers, C.A.M., Hoogendorn, C.J. and Giling, L.J., J. Crystal Growth 94, 929 (1989).CrossRefGoogle Scholar
24. Giling, L.J., J. Electrochem. Soc. 129, 634 (1982).Google Scholar
25. Moffat, H.K. and Jensen, K.F., J. Crystal Growth 77, 108 (1986).Google Scholar
26. Wahl, G., Thin Solid Films 40, 13 (1977).Google Scholar
27. Fotiadis, D.I., Kramer, A.M., McKenna, D.R., and Jensen, K.F., J. Crystal Growth 85, 154 (1987).Google Scholar
28. Wang, C.A., S.H. Groves, Palmateer, S.C., Weyburne, D.W. and Brown, R.A., J. Crystal Growth 77, 136 (1986).Google Scholar
29. Moffat, H.K. and Jensen, K.F., J. Electrochem. Soc. 135, 459 (1988).Google Scholar
30. Fotiadis, D.I., Boekholt, M., Jensen, K.F. and Richter, W., J. Crystal Growth (submitted).Google Scholar
31. Lee, P., Omstead, T.R., McKenna, D.R. and Jensen, K.F., J. Crystal Growth 85, 165 (1987).Google Scholar
32. Kileen, K. P., Hebner, G.A., and Biefeld, R.M., in Chemical Perspectives of Microelectronic Materials, edited by Gross, M.E., Yates, J.T., and Jasinski, J. (Proc. Mat. Res. Soc. 131, 1989).Google Scholar
33. Jacko, M.G. and Price, S.J.W., Can. J. Chem. 41, 1560 (1963).Google Scholar
34. Tsang, W. and Hampson, R.F., J. Phys. Chem. Ref. Data 15(3), 1087 (1986).Google Scholar
35. Tamaru, K., J. Phys. Chem. 59, 777 (1955).Google Scholar
36. Lijth, H. and Matz, R., Phys. Rev. Lett. 60, 1652 (1981).Google Scholar
37. Benson, S. W., Thermochemical Kinetics, 2nd ed. (Wiley, New York, 1976).Google Scholar
38. Liickerath, R., Tommack, P., Koss, H.J., Balk, P., and W. Richter paper to be presented at the Third European Workshop on MOVPE, Montpellier, France, June 1989.Google Scholar
39. Kuech, T.F., unpublished data.Google Scholar
40. Kuech, T.F., Veuhoff, E., Woldford, D.J. and Bradley, J.A. in: Proc. 1 lth Int. Symp. on GaAs and Related Compounds, Biarritz, 1984, Inst. Phys. Conf. Ser. 74, 181 (1985).Google Scholar
41. Kuech, T.F. and Veuhoff, E., J. Crystal Growth 68, 148 (1984).Google Scholar
42. Kuech, T.F. and Buchan, N.I., paper in preparation.Google Scholar
43. Dapkus, P.D., Manasevit, H.M., Hess, K.L., Low, T.S., and Stillman, G.E., J. Crystal Growth 55, 10 (1981).Google Scholar
44. Fotiadis, D.I. and Jensen, K.F., paper in preparation.Google Scholar