Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T18:21:55.763Z Has data issue: false hasContentIssue false

The Microstructure of Gold Films Written by Focused Ion Beam Induced Deposition

Published online by Cambridge University Press:  25 February 2011

Patricia G. Blauner
Affiliation:
Research Laboratory of Electronics Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Jae Sang Ro
Affiliation:
Research Laboratory of Electronics Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Yousaf Butt
Affiliation:
Research Laboratory of Electronics Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Carl V. Thompson
Affiliation:
Research Laboratory of Electronics Massachusetts Institute of Technology, Cambridge, MA 02139, USA
John Melngailis
Affiliation:
Research Laboratory of Electronics Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Get access

Abstract

Focused ion beam induced deposition of gold microfeatures is accomplished by 40 keV Ga+ bombardment of a substrate on which dimethyl gold hexafluoro acetylacetonate is continuously adsorbed. Under optimum conditions, deposition rates exceeding 11 Å/s have been achieved as well as high aspect ratio features, linewidths of approximately 0.1.μm, and resistivities of 500—1500 μΩcm. The microstructure, composition, and yield of the deposits have been examined as a function of various process parameters. Improved film growth and purity are observed in deposits made with lower organometallic pressures or higher current densities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example: Harper, J.M.E., Cuomo, J.J., and Kaufman, H.R., J. Vac. Sci Technol. 21, 737 (1982).CrossRefGoogle Scholar
2. Gamo, K., Takakura, N., Samoto, N., Shimizu, R., and Namba, S., Japan. J. Appl. Phys. 23, L293 (1984).CrossRefGoogle Scholar
3. For review of the subject: Ehrlich, D.J. and Tsao, J.Y., J. Vac. Sci. Technol. B1, 969 (1983).Google Scholar
4. Matsui, S. and Mori, K., J. Vac. Sci. Technol. B4, 299 (1986).CrossRefGoogle Scholar
5. Jackman, R.B. and Foord, J.S., Appl. Phys. Lett. 42, 196 (1986).Google Scholar
6. Koops, H.W.P., Weiel, R., and Kern, D.P., J. Vac. Sci. Technol. B6, 477 (1988).CrossRefGoogle Scholar
7. Kunz, R.R. and Mayer, T.M., Appl. Phys. Lett. 50, 962 (1987).Google Scholar
8. Gamo, K., Takehara, D., Hamamura, Y., Tomita, M., and Namba, S., Microel. Eng. 5, 163 (1986).Google Scholar
9. Shedd, G.M., Lezec, H., Dubner, A.D., and Melngailis, J., Appl. Phys. Lett. 49, 1584 (1986).CrossRefGoogle Scholar
10. Ruldenauer, F.G., Steiger, W., and Schrottmayer, D., J. Vac. Sci. Technol. B6, 1542 (1988).Google Scholar
11. Stern, L.A., Stewart, D.K., Presented at 35th Meeting of Amer. Vac. Soc.(1988).Google Scholar
12. Cleaver, J.R.A., Ahmed, H., Heard, P., Prewett, P., Dunn, G., Kaufman, H., Microel. Eng. 3, 253 (1985).CrossRefGoogle Scholar
13. Economou, N.P., Shaver, D.C., and Ward, B., SPIE 773, 201 (1987).Google Scholar
14. Yamamoto, M., Sato, M., Kyogoko, H., Aita, K., Nakagawa, Y., Yasaka, A., Takasawa, R., Hattori, O., SPIE 632, 97 (1986).Google Scholar
15. Robinson, W.P. and Williams, D.W., Presented at 35th Meeting of Amer. Vac. Soc. (1988).Google Scholar
16. For review of applications of focused ion beams: Melngailis, J., J. Vac. Sci. Technol B5 469 (1987).Google Scholar
17. Blauner, P.G., Ro, J.S., Butt, Y., Thompson, C.V., and Melngailis, J., to be published.Google Scholar
18. Ro, J.S., Dubner, A.D., Thompson, C.V., and Melngailis, J., Mat. Res. Soc. Symp. 101, 255 (1988).Google Scholar