Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-29T12:15:20.944Z Has data issue: false hasContentIssue false

Microelectrochemical Characterization and Modification of Semiconductor Surfaces with Polycrystalline Ti/TiO2 as an Example

Published online by Cambridge University Press:  10 February 2011

A. Michaelis
Affiliation:
Institut für Physikalische Chemie und Elektrochemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
S. Kudelka
Affiliation:
Institut für Physikalische Chemie und Elektrochemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
J. W. Schultze
Affiliation:
Institut für Physikalische Chemie und Elektrochemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
Get access

Abstract

Different new micro-methods such as anisotropy micro-ellipsometry (AME), photoresist micro-electrochemistry, micro-photocurrent spectroscopy, and UV-laser scanning were performed simultaneously to characterize and modify heterogeneous semiconducter surfaces. All measurements were carried out on single grains with the Ti/TiO2 system as an example. The crystallographic orientations of the substrate grains were determined in-situ by AME. It is shown that both the electronic and the optical properties of the semiconducting TiO2 films sensitively depend on the substrate texture. Film properties such as layer thickness and defect state concentration vary with the substrate orientation in a systematic manner.

The TiO2 films were modified at high local resolution by means of focused UV-laser illumination. Both a thickening (writing) or thinning (erasing) of the films could be realized depending on the potential applied during the illumination. Therefore, the anodic potential could be used to control the layer thickness and to generate semiconducting structures with thickness gradients.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arsov, Lj. D.: Electrochim. Acta, 30 (1985) 1645 Google Scholar
2. Michaelis, A., Schuitze, J.W.: Thin Solid Films 233 (1993) 86 Google Scholar
3. Michaelis, A., Schuitze, J.W.: Thin Solid Films 274 (1996) 82 Google Scholar
4. Kudelka, St., Michaelis, A., Schuitze, J.W.: Electrochim. Acta, 40 (1995)Google Scholar
5. Kudelka, St., Michaelis, A.; Schuitze, J.W.: Ber. Bunsenges. Phys. Chem. 99 (1995) 1020 Google Scholar
6. Schuitze, J.W., Bade, K., Michaelis, A.: Ber. Bunsenges. Phys. Chem. 95 (1991) 1349 Google Scholar
7. Bade, K., Karstens, O., Michaelis, A., Schuitze, J.W.: Faraday Disc. 94 (1992) 45 Google Scholar
8. Michaelis, A., Schuitze, J.W.: Electrochim Acta, accepted for publicationGoogle Scholar
9. Sukamto, J.P.H., Smyrl, W.H., McMillan, C.S., Kozlowski, M.R.: J. Electrochem. Soc. 130 (1992) 265 Google Scholar
10. Sukamto, J.P.H., McMillan, C.S., Smyrl, W.H.: Electrochimica Acta 38, (1993) 15 Google Scholar
11. Michaelis, A., Schuitze, J.W., Applied Surface Science (1996) in pressGoogle Scholar
12. Quarto, F. Di., Piazza, S., Sunseri, C.: Ber. Bunsenges. Phys. Chem. 91, (1987) 437 Google Scholar
13. Quarto, F. Di., Piazza, S., C., Sunseri: J. Chem. Soc. Faraday Trans. I, 85, (1989), 3309 Google Scholar
14. Michaelis, A., Delplancke, J.L.; Schuitze, J.W.: Materials Science Forum, 471 (1995) 185 Google Scholar