Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T21:21:58.090Z Has data issue: false hasContentIssue false

Microcrystalline Silicon Prepared by VHF-GD: Structure, Transport and Optical Properties

Published online by Cambridge University Press:  28 February 2011

F. Finger
Affiliation:
Forschungszentrum Jülich, Institut fur Schicht- und Ionentechnik, D-5170 Jülich, Germany
R. Carius
Affiliation:
Forschungszentrum Jülich, Institut fur Schicht- und Ionentechnik, D-5170 Jülich, Germany
P. Hapke
Affiliation:
Forschungszentrum Jülich, Institut fur Schicht- und Ionentechnik, D-5170 Jülich, Germany
K. Prasad
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
R. Fliickiger
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
Get access

Abstract

Doped and compensated microcrystalline silicon prepared by Very High Frequency Glow Discharge has been investigated by optical spectroscopy and by temperature dependence of the electrical conductivity. Raman spectroscopy confirms the microcrystalline nature of all samples with only small changes of the crystalline volume fraction upon doping. Strong absorption in the infrared region, which correlates with the conductivity, is attributed to free carrier absorption. As a function of temperature the conductivity of all samples shows a deviation from a purely activated behaviour. Consequences of this observation for transport mechanisms are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] for an overview see: Willeke, G., in “Physics and application of amorphous and microcrystalline semiconductor devices”, ed. Kanicki, J., Artech House, (1992)Google Scholar
[2] Richter, H. and Ley, L., J. Appl. Phys. 52, (1981) 7281 Google Scholar
[3] Usui, S. and Kikuchi, M., J. Non-Cryst. Solids 34 (1979) 1 Google Scholar
[4] Dubois, J. M., Willeke, G., Prasad, K., Blenk, O., Shah, A. and Bucher, E., to be published in Proc. 11th EC PVSEC Montreux. October 1992 Google Scholar
[5] Jackson, W.B., Amer, N.M., Boceara, A.C. and Fournier, D., Appl. Optics 20 (1981)1333 Google Scholar
[6] Tsu, R., Gonzalez-Hernandez, J., Chao, S.S., Lee, S.C. and Tanaka, K., Appl. Phys. Lett. 40(1982)534 Google Scholar
[7] Bustarret, E., Hachicha, M. A. and Brunei, M., Appl. Phys. Lett. 52 (1988) 1675 Google Scholar
[8] Finger, F., Prasad, K., Dubail, S., Shah, A., Tang, X.-M., Weber, J. and Beyer, W., Mat Res. Soc. Symp. Proc. 219 (1991) 469 Google Scholar
[9] Spitzer, W. and Fan, H. Y., Phys. Rev. 106 (1957) 882; 108 (1957) 268Google Scholar
[10] Mishima, Y., Hirose, M. and Osaka, Y., J. Appl. Phys. 51 (1980) 1157 Google Scholar
[11] Pierz, K., Fuhs, W. and Mell, H., Phil. Mag. B 63 (1991) 123 Google Scholar
[12] Seto, J. Y. W., J. Appl. Phys. 46 (1975) 5247 Google Scholar
[13] Schwarz, R., private communicationGoogle Scholar
[14] Seager, C.H. and Castner, T.G., J. Appl. Phys. 49 (1978) 3879 Google Scholar