Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T21:28:04.887Z Has data issue: false hasContentIssue false

Layered Inorganic-Organic Nanocomposites: Application to Photofunctional Materials and Conversion to Inorganic Microporous Materials

Published online by Cambridge University Press:  25 February 2011

Kazuyuki Kuroda
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo–3, Shinjukuku, Tokyo 169, Japan
Makoto Ogawa
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo–3, Shinjukuku, Tokyo 169, Japan
Tsuneo Yanagisawa
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo–3, Shinjukuku, Tokyo 169, Japan
Chuzo Kato
Affiliation:
Department of Applied Chemistry, Waseda University, Ohkubo–3, Shinjukuku, Tokyo 169, Japan
Get access

Abstract

Layered inorganic-organic nanocomposites can be prepared by intercalation of organic compounds into various two dimensional inorganic compounds, such as clay minerals and layered polysilicates. Two different roles of organic guest species are described in the application of intercalation compounds to development of functional materials. The first case shows that organic substances with peculiar photochemical properties can be incorporated in the nanometer—scaled interlayer spaces. Luminescence behavior and photochemical hole burning (PHB) of layered inorganic—organic nanocomposites are investigated from the viewpoint of host-guest interactions. The luminescence maxima of intercalated Ru(bpy)32+ incorporated into fluor—tetrasilicic mica cointercalated with poly(vinylpyrrolidone) shifted gradually oward blue with the decrease in the loading of Ru(bpy)32+ Ru(bpy)32+ was effectively isolated to suppress self quenching due to aggregation even at its high concentration loading. 1,4-Dihydroxyanthraquinone which is known to show a PHB reaction was intercalated into a tetramethylammonium pillared clay mineral and persistent spectral zero—phonon hole was observed at liquid helium temperatures. In spite of the high concentration of 1,4-dihydroxyanthraquinone, a narrow hole was obtained with no distinct decrease in burning efficiency if compared with those doped in ordinary polar polymers or organic glasses. In the second case, intercalation of organic substances into a layered polysilicate induces the change of the layered structure to form a three—dimensional silicate network by condensation of silanol groups in adjacent layers. This phenomenon indicates that novel microporous materials with controlled pore sizes can be prepared through inorganic-organic nanocomposites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whittingham, M.S. and Jacobson, A.J. eds.,“Intercalation Chemistry”, Academic Press (1982).Google Scholar
2. Anpo, M. and Matsuura, T., eds. “Photochemistry on Solid Surfaces”, Studies in surface science and catalysis 47; Elsevier, Amsterdam (1989).Google Scholar
3. Theng, B.K.G.,“The Chemistry of Clay-Organic Reactions”, Adam Hilger, London (1974).Google Scholar
4. (a) Juris, J., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., and Zelewsky, A. Von, Coord. Chem. Rev. 84, 85(1988). (b) K.Kalyanasundaram, Coord.Chem. Rev. 46, 159(1982).Google Scholar
5. Thomas, J.K., Acc.Chem.Res. 21, 275(1988).Google Scholar
6. Habti, A., Keravis, D., Levitz, P., and Damme, H. Van, J.Chem.Soc., Faraday Trans.2. 80, 67(1984).Google Scholar
7. DellaGuardla, R.A. and Thomas, J.K., J.Phys.Chem. 87, 990(1983).Google Scholar
8. Schoonheydt, R.A., Pauw, P.de, Vliers, D., and Schryver, F.C., J.Phys.Chem. 88, 5113(1984).Google Scholar
9. Ghosh, P.K. and Bard, A.J., J.Phys.Chem. 88, 5519(1984).Google Scholar
10. (a)Joshi, V. and Ghosh, P.K., J.Am.Chem.Soc. 111, 5604(1989). (b)V.Joshi and P.K.Ghosh, J.Chem.Soc., Chem.Commun. 1987, 789.(c)V.Joshi, D.Kotkar, and P.K.Ghosh, Current Science, 57, 567(1988).Google Scholar
11. Krenske, D., Abdo, S., Damme, H. Van, Cruz, M., and Fripiat, J.J., J.Phys.Chem. 84, 2447(1980).Google Scholar
12. Abdo, S., Canesson, P., Cruz, M., Fripiat, J.J., and Damme, H.Van, J.Phys.Chem., 85,797(1981).Google Scholar
13. Turro, N.J., Kumar, C.V., Grauer, Z., and Barton, J.K., Langmuir, 3,1056 (1987).Google Scholar
14. Kuykendali, V.G. and Thomas, J.K., J.Phys.Chem. 94, 4224(1990).Google Scholar
15. Nakamura, T. and Thomas, J.K., Langmuir, 1, 567(1985).Google Scholar
16. (a)Nijs, H., Cruz, M., Fripiat, J.J., and Damme, H.Van, J.Chem.Soc., Chem.Commun., 1981,1026. (b)H.Nijs, M.Cruz, J.J.Fripiat, H.Van Damme, J.Phys.Chem. 87,1279(1983). (c)C.Detellier and G.Villemure, Inorg.Chim.Acta 86, L19(1984). (d)C.Detellier, G.Villemure, and H.Kodama, Can.J.Chem., 63,1139(1984). (e)G.Villemure, G.Bazan, H.Kodama, A.G.Szabo and C.Detellier, Appl.Clay Sci. 2, 241(1987). (f)H.Van Damme, H.Nijs, and J.J.Fripiat, J.Mol.Catal. 27, 123(1984). (g)H.Van Damme, F.Bergaya, A.Habti, and J.J.Fripiat, J.Mol.Catal.,21,223 (1983).Google Scholar
17. Kitajima, K. and Dalmon, N., Nippon Kagaku Kaishi 1974, 685; ibid. 1975, 991; ibid. 1976, 597.Google Scholar
18. Soma, M., Tanaka, A., Seyama, H., Hayashi, S., and Hayamizu, K., Clay Sci., 8, 1(1990).Google Scholar
19. Miyata, H., Sugahara, Y., Kuroda, K., and Kato, C.,J.Chem.Soc., Faraday Trans. 1, 83, 1851(1987).Google Scholar
20. e.g. Moerner, W.E. ed. Persistent Spectral Hole Burning: Science and Applications; Springer-Verlag: Berlin, 1988.Google Scholar
21. Graf, F., Hong, H.-K., and Haarer, D., Chem.Phys.Lett., 59, 217(1978). F.Drissler, F.Graf, and D.Haarer, J.Chem.Phys., 72, 4996(1980).Google Scholar
22. Iino, Y., Tani, T., Sakuda, M., Nakahara, H., and Fukuda, K., Chem.Phys.Lett., 140, 76(1987). T.Tani, Y.Iino, M.Sakuda, A.Itani, H.Nakahara, and K.Fukuda, J.Luminesc., 38, 43(1987).Google Scholar
23. Friedrich, J., Wolfrum, H., and Haarer, D., J.Chem.Phys., 77, 2309(1982). J.Friedrich, J.D.Swalen, and D.Haarer, J.Chem.Phys., 73, 705(1980).Google Scholar
24. Tani, T., Itani, A., Iino, Y., and Sakuda, M., J.Chem.Phys.,88, 1272(1988).Google Scholar
25. Tani, T., Namikawa, H., Aral, K., and Makishima, A.,J.Appl.Phys.,58, 3559(1985).Google Scholar
26. Tani, T., Itani, A., Iino, Y., and Sakuda, M.,Jpn.J.Appl.Phys.,26, suppl., 77(1987). T.Tani, Y.Sakakibara, and K.Yamamoto, Jpn.J.Appl.Phys., 28, suppl., 239(1989).Google Scholar
27. Basch, Th. and Bruschie, C., J.Phys.Chem., 95, 7130(1991). Th.Basch and C.Bruschle, Chem.Phys.Lett., 181, 179(1991).Google Scholar
28. Barrer, R.M. and MacLeod, D.M., Trans.Faraday Soc., 51, 1290(1955).Google Scholar
29. Lee, J.-F., Mortl, M.M. and Boyd, S.A., and Chiou, C.T., J.Chem.Soc.,Faraday Trans., 1, 85, 2953(1989).Google Scholar
30. Newman, A.C.D. ed. “Chemistry of Clays and Clay MineralsMineralogical Society: London, 1987; 5455.Google Scholar
31. Ogawa, M., Handa, T., Kuroda, K., Kato, C., and Tani, T., J.Phys.Chem., 96,8116 (1992).Google Scholar
32. Hayashi, S., Suzuku, K., Shin, S., Hayamizu, K., and Yamamoto, O., Chem.Phys. Lett., 113, 368(1985).Google Scholar
33. Ezaby, M.S.EI, Salem, T.M., Zewail, A.H., and Issa, R., J.Chem.Soc.(B), 1970, 1293.Google Scholar
34. Similar experimental condition is significant because if e.g. temperature is lowered to 1.4 K in boric acid glass as matrix, the width becomes almost factor 9 narrower. (See Moerner, W.E., Gehrtz, M., Huston, A.L., J.Phys.Chem., 88, 6459(1984).)Google Scholar
35. Moerner, W.E. and Levenson, M.D., J.Opt.Soc.Am.B., 2, 915(1985).Google Scholar
36. Beneke, K. and Lagaly, G., Am.Mineral., 62,763(1977).Google Scholar
37. Yanagisawa, T., Shimizu, T., Kuroda, K., and Kato, C., Bull. Chem. Soc. Jpn., 63, 988 (1990)Google Scholar
38. Yanagisawa, T., Shimizu, T., Kuroda, K., and Kato, C., ibid, 63, 1535(1990).Google Scholar