Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T17:16:10.892Z Has data issue: false hasContentIssue false

Large Scale Statistics for Computational Verification of Grain Growth Simulations with Experiments

Published online by Cambridge University Press:  01 February 2011

Melik C. Demirel
Affiliation:
Carnegie Mellon University, Department of Materials Science & Engineering, PA, USA Theoretical Division, T-1, Los Alamos National Laboratory, NM, USA Materials Science and Technology, MST-8, Los Alamos National Laboratory, NM, USA
Andrew P. Kuprat
Affiliation:
Theoretical Division, T-1, Los Alamos National Laboratory, NM, USA
Denise C. George
Affiliation:
Theoretical Division, T-1, Los Alamos National Laboratory, NM, USA
Galen K. Straub
Affiliation:
Theoretical Division, T-1, Los Alamos National Laboratory, NM, USA
Amit Misra
Affiliation:
Materials Science and Technology, MST-8, Los Alamos National Laboratory, NM, USA
Kathleen Alexander
Affiliation:
Materials Science and Technology, MST-8, Los Alamos National Laboratory, NM, USA
Anthony D. Rollett
Affiliation:
Carnegie Mellon University, Department of Materials Science & Engineering, PA, USA
Get access

Abstract

It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. We have previously showed a strong similarity between small-scale grain growth experiments and anisotropic three-dimensional simulations obtained from the Electron Backscattered Diffraction (EBSD) measurements [1]. Using the same technique, we obtained 5170-grain data from an Aluminum-film (120μm thick) with a columnar grain structure. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Demirel, M. C., Kuprat, A. P., George, D. C., Straub, G. B., Rollett, A. D., Interface Science 10, 139 (2002).Google Scholar
2. Adams, B. L., Ultramicroscopy 67, 1117 (1997).Google Scholar
3. Suter, R. M., Kosack, K., Proceedings of the twelfth international Conference on Texture of Materials, Montreal, Canada (1999), pp. 8085.Google Scholar
4. Jensen, D. J., Kvick, A., Lauridsen, E. M., Lienert, U., Margulies, L., Nielsen, S. F., Poulsen, H. F., Plastic deformation, recrystallization and internal stresses studied by a new 3D XRay microscope, MRS Fall'99 Meeting, Boston, MA, USA (1999), pp. 227240.Google Scholar
5. Kinderlehrer, D., Livshits, I., Mason, D., Ta'asan, S., Interface Science in press (2002).Google Scholar
6. Yang, C.-C., Mullins, W. W., Rollett, A. D., Scripta Materialia 44, 27352740 (2001).Google Scholar
7. Adams, B. L., Kinderlehrer, D., Mullins, W. W., Rollett, A. D., Ta'asan, S., Scripta Materialia 38, 531536 (1998).Google Scholar
8. Kinderlehrer, D., Livshits, I., Ta'asan, S., Mason, D. E., Multiscale reconstruction of grain boundary energy from microstructure, Twelfth International Conference on Textures of Materials, Montréal, Canada (1999), pp. 16431648.Google Scholar
9. Mullins, W. W., Acta Metallurgica 37, 29792984 (1989).Google Scholar
10. Kuprat, A., Siam Journal on Scientific Computing 22, 535560 (2000).Google Scholar
11. Demirel, M. C., El-Dasher, B. S., Adams, B. L., Rollett, A. D., in Electron Backscatter Diffraction in Materials Science Adam, M. K. Schwartz, J., and Adams, Brent L., Ed. (Kluwer Academic/Plenium Publishers, New York, 2000) pp. 6574.Google Scholar
12. George, D., User Manual, http://www.t12.lanl.gov/~lagrit/. (1995).Google Scholar
13. Schlei, B. R., Region enclosing contours from edge pixels, SPIE conference proceedings, Seattle (2002), in print.Google Scholar
14. Gottstein, G., Shvindlerman, L. S., (CRC Press, Boca Raton, 1999).Google Scholar