No CrossRef data available.
Article contents
Kinetic Control of CaF2 on Si(111) Growth Morphology
Published online by Cambridge University Press: 15 February 2011
Abstract
Thin (0.5 to 8 triple layer) CaF2 on Si(111) films were grown using molecular beam epitaxy (MBE) and characterized using an in situ combination of x-ray photoelectron spectroscopy (XPS) and componentresolved x-ray photoelectron diffraction (XPD). We identified surface, bulk-like, and interface F and Ca core-level shifts and used the XPS shifts and XPD modulations to identify the growth modes as a function of the kinetic parameters of CaF2 flux and Si temperature. We identify 3 distinct regimes: (i) for high temperatures and flux we find a complete reacted F-Ca-Si layer, overlaid by 2 layer high islands which coalesce, followed by layer-by-layer growth, (ii) for high temperature and low flux, we find the reacted F-Ca-Si layer to be partially covered with thick islands, and (iii) for low temperatures we find an incompletely occupied F-Ca-Si layer followed by layer-by-layer growth. In all cases we find the buried interface to be structurally identical to the unburied F-Ca-Si layer
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1993
References
1 Sinharoy, S., Thin Solid Films 187, 231 (1990).CrossRefGoogle Scholar
2 Schowalter, L. J. and Fathauer, R. W., CRC Crit. Rev. in Solid State Mat. Sci. 15, 367 (1989).CrossRefGoogle Scholar
3 Olmstead, M. A., Uhrberg, R. I. G., Bringans, R. D., and Bachrach, R Z., Phys. Rev. B 35(14), 7526 (1987).CrossRefGoogle Scholar
4 Rieger, D., Himpsel, F. J., Karlsson, U. O., McFeely, F. R., Morar, J. F., and Yarmoff, J. A., Phys. Rev. B 34(10), 7295 (1986).CrossRefGoogle Scholar
5 Hashimoto, S., Peng, J.-L., Gibson, W. M., Schowalter, L. J., and Fathauer, R. W., Appl. Phys. Lett. 47,1071 (1985).CrossRefGoogle Scholar
6 Denlinger, J. D., Rotenberg, Eli, Leskovar, M., Hessinger, U., Olmstead, M. A., Appl. Phys. Lett., 62(17), 2057 (1993).CrossRefGoogle Scholar
7 Rotenberg, Eli, Denlinger, J. D., Leskovar, M., Hessinger, U., Marjorie Olmstead, A., J. Vac. Sci. Technol B 11(4) (1993, in press).CrossRefGoogle Scholar
8 Barton, J. J., Phys. Rev. Lett., 61, 1356 (1988).CrossRefGoogle Scholar
9 Rotenberg, Eli, Denlinger, J. D., Leskovar, M., Hessinger, U., Olmstead, Marjorie A., to be published.Google Scholar
10 Denlinger, J. D., Thesis, University of California at Berkeley (1993).Google Scholar
11 Lucas, C. A., Wong, G. C. L., Loretto, D., Phys. Rev. Lett. 70(12), 1826 (1993).CrossRefGoogle Scholar
12 Lucas, C. A., Wong, G. C. L., Loretto, D., this conference.Google Scholar
13 Alvarez, J. C. et al., Semicond. Sci. Technol. 7, 1431 (1992).CrossRefGoogle Scholar
14 Himpsel, F. J., Karlsson, U. O., Morar, J. F., Rieger, D., and Yarmoff, J. A., Phys. Rev. Lett. 56(14), 1497 (1986)CrossRefGoogle Scholar
15 atsch, R. and Zangwill, A., Surface Science, in press,Google Scholar
16 Cho, C. C., Kim, T. S., Gnade, B. E., and Liu, H. Y., Appl. Phys. Lett. 60, 338 (1992).CrossRefGoogle Scholar
17 Asano, T., Ishiwara, H., and Kaifu, N., Jap. J. Appl. Phys. 22, 1474 (1983).CrossRefGoogle Scholar