Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T09:34:40.762Z Has data issue: false hasContentIssue false

Ion Beam Induced Epitaxial Regrowth and Interfacial Amorphization of Compound Semiconductors

Published online by Cambridge University Press:  03 September 2012

E. Glaser
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, D-07743 Jena, Germany
T. Fehlhaber
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, D-07743 Jena, Germany
R. Schulz
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, D-07743 Jena, Germany
T. Bachmann
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, D-07743 Jena, Germany
P. Gaiduk
Affiliation:
Belarusian State University, Institute of Applied Physics Problems, KurchatovstreelL 7, 220064 Minsk, Belarus
Get access

Abstract

A review of MeV-ion beam induced crystallization (IBIEC) and interfacial amorphization (IBIIA) in III-V compounds (GaAs, InAs, GaP, InP) is given. The kinetics of IBIEC and IBIIA is studied as a function of the temperature, the density of the displacements v, and the ion dose rate j. Reversal temperatures TR for IBIEC ↔ IBIIA transitions are determined for the different materials showing characteristic dependences on v and j. The IBIEC rate is shown to be controlled by point defect diffusion towards the a/c-interface and additionally modified by the interface structure. The suppression of microtwin and stacking fault formation during IBIEC is explained by the fact that the ion beam modifies the orientation dependence of the crystallization kinetics avoiding the disintegration and (111)-faceting of the (100)-interface. For all the compound materials investigated the IBIEC process is stopped above critical temperatures and doses. The capture of diffasing defects by crystallites growing in the amorphous layers is considered to be responsible for the stopping of the IBIEC interface. Ways are demonstrated to avoid stopping, to achieve complete epitaxial regrowth also of thick layers, and to minimize the generation of stable damage in the crystallized layers. The limited temperature ranges for undisturbed IBIEC and IBIIA in III/V-compounds are explained by low nucleation barriers and high growth rates both of crystallites and of amorphous zones.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sadana, D.K., Nucl. Instr. and Meth. B7/8, 375 (1985).Google Scholar
2. Linnros, J., Elliman, R.G., and Brown, W.L., J. Mater. Res. 3, 1208 (1988).Google Scholar
3. Priolo, F. and Rimini, E., Mater. Sci. Rep. 5, 319 (1990) and references therein.Google Scholar
4. Custer, J.S., Battaglia, A., Saggio, M., and Priolo, F., Phys. Rev. Lett. 69, 780 (1992).Google Scholar
5. Heera, V., Henkel, T., Kögler, R., and Skorupa, W., Phys. Rev. B 52, 15776 (1995) and references therein.Google Scholar
6. Jackson, H.A., J. Mater. Res. 3, 1218 (1988).Google Scholar
7. Glaser, E., Bachmann, T., Schulz, R., Schippel, S., and Richter, U., Nucl. Instr. and Meth. B 106, 281 (1995).Google Scholar
8. Bachmann, T., Glaser, E., Schulz, R., Kaiser, U., and Sdfrdn, G., Nucl. Instr. and Meth. B 113, 214(1996).Google Scholar
9. Glaser, E.. Gaiduk, P., Kaiser, U., Schulz, R., and Bachmann, T., to be published.Google Scholar
10. Csepregi, L., Kennedy, E.F., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
11. Csepregi, L., Ktillen, R.P., Mayer, J.W., and Sigmon, T.W., Solid State Commun. 21, 1019 (1977).Google Scholar
12. Licoppe, C., Nissim, Y.J., Henoc, P., Appl. Phys. Lett. 48, 1441 (1986).Google Scholar
13. Bachmann, T., Schulz, R., Glaser, E., Richter, U., and Schippel, S., Nucl. Instr. and Meth. B 106, 350 (1995).Google Scholar
14. Johnson, S.T., Elliman, R.G., and Williams, J.S., Nucl. Instr. and Meth. B 39, 449 (1989).Google Scholar
15. Drosd, R. and Washburn, J., J. Appl. Phys. 53, 397 (1982).Google Scholar
16. Glaser, E., to be publisshed.Google Scholar
17. Kögler, R., Heera, V., Skorupa, W., Glaser, E., Bachmann, T., and Rüick, D., Nucl. Instr. and Meth. B 80/81, 556 (1993).Google Scholar
18. Schulz, R., Bachmann, T., Glaser, E., and Gaiduk, P., Nucl. Instr. and Meth. B, in press.Google Scholar
19. Glaser, E., Fehlhaber, T., to be published.Google Scholar
20. Battaglia, A., Priolo, F., Rimini, E., Appl. Surf Sci. 56–58, 577 (1992).Google Scholar