Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T13:26:06.983Z Has data issue: false hasContentIssue false

Intense Visible Luminescence from Thermally-Oxidized Porous Silicon

Published online by Cambridge University Press:  28 February 2011

S. Miyazakj
Affiliation:
Department of Electrical Engineering, Hiroshima University Higashi-Hiroshima 724, Japan
K. Shiba
Affiliation:
Department of Electrical Engineering, Hiroshima University Higashi-Hiroshima 724, Japan
K. Sakamoto
Affiliation:
Department of Electrical Engineering, Hiroshima University Higashi-Hiroshima 724, Japan
M. Hirose
Affiliation:
Department of Electrical Engineering, Hiroshima University Higashi-Hiroshima 724, Japan
Get access

Abstract

Photoluminescence from porous silicon oxidized at 800 or 900°C in an N2 +O2 gas mixture has been investigated. The ideal passivation of the porous Si surface with thermally grown oxide results in stable, intense visible-light emission. The steady-state and time-resolved luminescence measured as functions of temperature and excitation power have indicated that a possible pathway for the light emission is the radiative recombination through localized states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Canham, L. T.: Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2] Lehmann, V. and Gosele, U.: Appl. Phys. Lett. 58, 856 (1991).Google Scholar
[3] Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J. and Cardona, M.: Solid State Commun. 81, 307 (1992).Google Scholar
[4] Friedersdorf, L. E. and Searson, P. C., Prokes, S. M., Glembocki, O. J. and Macaulay, J. M.: Appl. Phys. Lett. 60, 2285 (1992).Google Scholar
[5] Miyazaki, S., Shiba, K., Sakamoto, K. and Hirose, M.: Optoelectronics 7, 95 (1992).Google Scholar
[6] Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K. and White, J. M.: Appl. Phys. Lett. 59, 2814 (1991).Google Scholar
[7] Collins, R. T., Tischler, M. A. and Stathis, J. H.: Appl. Phys. Lett. 61, 1649 (1992).Google Scholar
[8] Ito, T., Ohta, T. and Hiraki, A.: Jpn. J. Appl. Phys. 31, L1 (1992).Google Scholar
[9] Yamada, M. and Kondo, K.: Jpn. J. Appl. Phys. 31, L993 (1992).Google Scholar
[10] Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., and Koch, F.: Appl. Phys. Lett. 61, 943 (1992).Google Scholar
[11] Shiba, K., Sakamoto, K., Miyazaki, S. and Hirose, M.: Extended Abstracts of the 1992 Intern. Conf. on Solid State Devices and Materials, Tsukuba, 1992, p. 699 (J. Soc. Appl. Phys., Tokyo, 1992).Google Scholar
[12] Tischler, M. A., Collins, R. T., Stathis, J. H. and Tsang, J. C.: Appl. Phys. Lett. 60, 639 (1992).Google Scholar
[13] Zheng, X. L., Wang, W. and Chen, H. C.: Appl. Phys. Lett. 60, 986 (1992).Google Scholar
[14] Street, R. A.: Semiconductors and Semimetals, ed. Pankove, J. I. (Academic Press, Orlando, 1984) Vol. 21 B, Chapter 7, p. 222.Google Scholar