Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T19:04:29.867Z Has data issue: false hasContentIssue false

Inorganic Fullerenes of MX2 (M=W,Mo;X=S,Se)

Published online by Cambridge University Press:  15 February 2011

R. Tenne
Affiliation:
Department of Materials and Intefaces, Weizmann Institute, Rehovot 76100, Israel
L. Margulis
Affiliation:
Department of Materials and Intefaces, Weizmann Institute, Rehovot 76100, Israel
Y. Feldman
Affiliation:
Department of Materials and Intefaces, Weizmann Institute, Rehovot 76100, Israel
M. Homyonfer
Affiliation:
Department of Materials and Intefaces, Weizmann Institute, Rehovot 76100, Israel
Get access

Abstract

The gas-phase reaction between MoO3-x and H2S in a reducing atmosphere and at elevated temperatures (800° to 950°C) has been used to synthesize large quantities of an almost pure nested inorganic fullerenes (IFs) phase of MoS2. A uniform IF phase with a relatively narrow size distribution was obtained. The x-ray spectra of the different samples show that as the average size of the IF decreases the van der Waals gap along the c axis increases, largely because of the strain involved in folding of the lamella. Large amount of quite uniform nanotubes were obtained under modified preparation conditions.

In the second part of this work MoS2 nested fullerenes were grown on Ti and Nb and Mo oxide substrates. In one set of conditions hollow nested fullerenes of MoS2 were collected on a titanium oxide matrix, and analyzed by local area energy dispersive analysis. Under different flow conditions of the reacting gasses nested fullerenes with endohedral metal oxides were obtained and analyzed by electron diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H. W., O'Brien, J. R., Heath, J. R., Curl, R. F., Smalley, R. E., Nature, 318, 162 (1985).Google Scholar
2. Iijima, S., J. Cryst. Growth, 50, 675 (1980).Google Scholar
3. Iijima, S., Nature, 354, 56 (1991).Google Scholar
4. Robertson, D. H., Brenner, D. W., White, C. T., J. Phys. Chem., 96, 6133 (1992).Google Scholar
5. Maiti, A., Brabec, C. J., Bernholc, J., Phys. Rev. Lett.,70, 3023 (1993); J. P. Lu and W. Yang, Phys. Rev. B, 49,11421 (1994).Google Scholar
6. Ugarte, D., Nature, 359, 707 (1992), Eur. Phys. Left., 22, 45 (1993).Google Scholar
7. Tenne, R., Margulis, L., Genut, M., Hodes, G., Nature, 360, 444 (1992);Google Scholar
8. Margulis, L., Salitra, G., Tenne, R., Talianker, M., Nature, 365, 113 (1993).Google Scholar
9. Hershfinkel, M. et al, J. Am. Chem. Soc., 116, 1914 (1994).Google Scholar
10. Kroto, H. W., Science, 242, 1139 (1988).Google Scholar
11. Zhang, O. L. et al, J. Phys. Chem., 90, 525 (1986); H. W. Kroto, Nature, 329, 529 (1987).Google Scholar
12. Arctowski, H., Z. Anorg. Allgem. Chem., 8, 213 (1895); P. R. Bonneau, R. F. Jarvis Jr., R. B. Kaner, Nature, 349, 510 (1991); N. Imanishi, K. Kanamura, Z. Takehara, J. Electrochem. Soc., 139, 2082 (1992).Google Scholar
13. E. Furimsky and Amberg, C.H., Can. J. Chem., 53, 3567 (1975); W. L. Lee, T. M. Besmann, M. W. Stott, J. Mater. Res., 9,1474 (1994).Google Scholar
14. Donley, M. S., McDevitt, N. T., Hass, T. W., Murray, P. T., Grant, J. T., Thin Solid Films, 168, 335 (1989).Google Scholar
15. Hofmann, W. K., J. Mater. Sci., 23, 3981 (1988).Google Scholar
16. Feldmann, Y., Wasserman, E., Srolovitz, D., and Tenne, R., Science, in press.Google Scholar
17. The role of the hydrogen was considered here as a reducing agent, only. However, hydrogen is known to intercalate into MoO3 [see, for example, Mehandru, S.P. and Anderson, A.B., J. Am. Chem. Soc., 110, 2061 (1988)].Google Scholar
18. Typically, metal dichalcogenide films adopt this morphology when grown at these elevated temperatures. See, for example Salitra, G., Hodes, G., Klein, E., Tenne, R., Thin Solid Films, 245, 180 (1994).Google Scholar
19. Saito, Y., Yoshikawa, T., Bandow, S., Tomita, M., Phys. Rev. B, 48, 1907 (1993); Y. Yosida, Appl. Phys. Lett., 64, 3048 (1994); M. Li and J. M. Cowley, Ultramicroscopy 53, 333 (1994).Google Scholar
20. Ajayan, P.M. and Iijima, S., Nature, 361, 333 (1993); E. Dujardin, T.W. Ebbesen, H. Hiura, and K. TanigAki, Science, 265, 1850 (1994).Google Scholar
21. Rouff, R.S. et al. , Science, 259, 346 (1992); M. Tomita, Y. Saito, and T. Hayashi, Jpn. J. Appl. Phys., 32, L280 (1993); S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, and R. Loutfy, Nature, 362, 503 (1993).Google Scholar
22. Bursill, L., Intl. J. Modern Phys. B, 4, 2197 (1990).Google Scholar