Published online by Cambridge University Press: 21 February 2011
The influences of silicon and phosphorus contents and cooling rate on JIC fracture toughness of ferritic spheroidal graphite cast iron were investigated by 15mm thick compact tension test-pieces. The JIC values were measured by means of the R-curve method for most cases at 20°C, and by means of the maximum J value method for the cases at -100° C. The results obtained are summarized as follows. At 20WC, the specimens with silicon contents less than 3.2% showed the ductile Load-COD relations, but a specimen with 3.5%Si showed a brittle Load-COD relation and the JIC decreased greatly. Increasing phosphorus content between 0.006% and 0.26% made the JIC value decrease gradually and made the slope of the R-curve decrease greatly. Difference in cooling rate produced differences in graphite nodule diameters and ferrite grain sizes. At 20°C, the larger the specimen's average graphite nodule diameter was, the larger the JIC value was. At -100° C, the Jic values of all the specimens tested decreased largely, and the influences of these factors became very different from those at 20° C.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.