Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T18:29:20.629Z Has data issue: false hasContentIssue false

Influence of Nanocrystallization on the High-Frequency Magnetoimpedance in Ultrathin Fe83Cu1Nb7B9 Melt-Spun Ribbons.

Published online by Cambridge University Press:  21 February 2011

L. Brunetti
Affiliation:
Istituto Elettrotecnico Nazionale Galileo Ferraris, Corso M. d'Azeglio 42, 1-10125 Torino, Italyand INFM Torino Politecnico Unit
O. Rampado
Affiliation:
Istituto Elettrotecnico Nazionale Galileo Ferraris, Corso M. d'Azeglio 42, 1-10125 Torino, Italyand INFM Torino Politecnico Unit
P. Tiberto
Affiliation:
Istituto Elettrotecnico Nazionale Galileo Ferraris, Corso M. d'Azeglio 42, 1-10125 Torino, Italyand INFM Torino Politecnico Unit
F. Vinai
Affiliation:
Istituto Elettrotecnico Nazionale Galileo Ferraris, Corso M. d'Azeglio 42, 1-10125 Torino, Italyand INFM Torino Politecnico Unit
Get access

Abstract

Ultrathin ribbons of amorphous Fe83Cu1Nb7B9 obtained by planar flow casting, have been submitted to dc Joule heating in vacuum to develop a nanocrystalline phase. Variations in the initial magnetic permeability as high as 1000 times the as-quenched value have been measured in a wide range of nanocrystalline samples. The magnetoimpedance behavior in the microwave region has been studied as a function of the nanocrystalline state. In this work the intensity of the impedance variation has been related to the samples degree of softness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoshizawa, Y., Oguma, S., and Yamauchi, Y., J. Appl. Phys. 64, 6044 (1988)Google Scholar
2. Allia, P., Baricco, M., Knobel, M., Tiberto, P., and Vinai, F., J. Magn. Magn. Mater. 133, 243 (1994)Google Scholar
3. Lee, J.S., Kim, K. Y., Noh, T. H., Kang, I. K., and Yoo, Y. C., IEEE Trans on Magn 31, 3901 (1995)Google Scholar
4. Chien, C.L., Xiao, J.Q., and Jiang, J. S., J. Appl. Phys. 73, 5309 (1993).Google Scholar
5. Mohri, K., Kawashima, K., Kohzawa, T., Yoshida, Y., and Panina, L. V., IEEE Trans on Magn. 28, 3150 (1992)Google Scholar
6. Panina, L.V., Mohri, K., Bushida, K., and Noda, M., J. Appl. Phys. 76, 6198 (1994)Google Scholar
7. Knobel, M., J. Phys. IV France 8, 213 (1998)Google Scholar
8. Kraus, J.D., Electromagnetics, (McGraw-Hill, New York, 1991), pp. 460470.Google Scholar
9. Brunetti, L., Tiberto, P., and Vinai, F., Sensors and Actuators A 67, 84 (1998)Google Scholar
10. Tiberto, P., Vinai, F., Allia, P., Baricco, M., Park, J.Y., and Kim, K.Y., J. Phys. IV France 8, 39 (1998)Google Scholar
11. Brunetti, L., Tiberto, P., Vinai, F., Chiriac, H., and Ovari, T. A. in Non-Crystalline and Nanoscale Materials, edited Rivas, R. and Lopez-Quintela, M.A. (World Scientific, Singapore 1998) p. 132 Google Scholar
12. Panina, L.V., Mohri, K., Uchiyama, T., and Noda, M., IEEE Trans on Magn 31, 1249. (1995)Google Scholar
13. Tiberto, P., Vinai, F., Rampado, O., Chiriac, H., and Ovari, T.A., J. Magn. Magn. Mater., in press (1999)Google Scholar