Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T08:56:59.218Z Has data issue: false hasContentIssue false

Influence Of Donor, Acceptor, And Isovalent Impurity Doping On Arsenic Excess And Point Defects In Low Temperature Grown GaAs

Published online by Cambridge University Press:  15 February 2011

V. V. Chaldyshev
Affiliation:
Ioffe Physico-Technical Institute, 194021 St.Petersburg, Russia
A. E. Kunitsyn
Affiliation:
Ioffe Physico-Technical Institute, 194021 St.Petersburg, Russia
N. N. Faleev
Affiliation:
Ioffe Physico-Technical Institute, 194021 St.Petersburg, Russia
V. V. Preobrazhenskii
Affiliation:
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
M. A. Putyato
Affiliation:
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
B. R. Semyagin
Affiliation:
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
V. V. Tretyakov
Affiliation:
Ioffe Physico-Technical Institute, 194021 St.Petersburg, Russia
Get access

Abstract

We show that in contrast to Si donor and Be acceptor doping, isovalent In impurity doping enhances arsenic excess in the GaAs films grown by molecular beam epitaxy at low temperature. This effect is due to an increase in the concentration of arsenic antisite defects. Gallium vacancy related defects are detected only in the samples annealed at high temperature. Their concentration is found to be higher in the indium-free material than in the indium doped one

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, F. W., Calawa, A. R., Chen, C. L., Mantra, M. J., and Mahoney, L. J., Electron Dev.Lett. 9, 77 (1988).Google Scholar
2. Kaminska, M., Liliental-Weber, Z., Weber, E. R., George, T., Kortright, J. B., W.Smith, F., Tsaur, B.Y., and Calawa, A. R., Appl.Phys.Lett. 54, 1831 (1989).Google Scholar
3. Melloch, M. R., Mahalingam, K., Otsuka, N., Woodall, J. M., and Warren, A.C., J.Cryst.Growth 111, 39(1991).Google Scholar
4. Bert, N. A., Veinger, A. I., Vilisova, M. D., Goloshchapov, S. I., Ivonin, I. V., Kozyrev, S. V., Kunitsyn, A. E., Lavrentieva, L. G., Lubyshev, D. I., Preobrazhenskii, V. V., Semyagin, B. R., Tretyakov, V. V., Chaldyshev, V. V., and Yakubenya, M. P., Phys.Solid State 35, 1289 (1993).Google Scholar
5. Bert, N. A., Chaldyshev, V. V., Goloshchapov, S. I., Kozyrev, S. V., Kunitsyn, A. E., Tretyakov, V. V., Veinger, A. I., Ivonin, I. V., Lavrentieva, L. G., Vilisova, M. D., Yakubenya, M. P., Lubyshev, D. I., Preobrazhenskii, V. V., and Semyagin, B. R., in: Physics and Applications of Defects in Advanced Semiconductors (Mat. Res. Soc. Symp. Proc. 325, 1994), pp.401406.Google Scholar
6. Liliental-Weber, Z., Swider, W., Yu, K. M., Kortright, J., Smith, F. W., and Calawa., A. R. Appl.Phys.Lett. 58, 2153 (1991).Google Scholar
7. Pritchard, R. E., McQuaid, S. A., Hart, L., Newman, R. C., Makinen, J., Bardeleben, H. J. von, and Missous, M.. J. Appl. Phys., 78, 2411 (1995)Google Scholar
8. Liu, X., Prasad, A., Nishio, J., Weber, E. R., Liliental-Weber, Z., and Walukiewicz, W.. Appl. Phys. Lett. 67, 279 (1995).Google Scholar
9. Gutkin, A. A., Averkiev, N. S., Reshchikov, M. A., and Sedov, V. E.. Mat. Sci. Forum 196–201, 231, (1995).Google Scholar
10. Biryulin, Yu. F., Ganina, N. V., Milvidskii, M. G., Shmartsev, Yu.V. and Chaldyshev, V. V.. Soy. Phys. Semicond., 17, 108 (1983)Google Scholar
11. Chaldyshev, V. V., Astrova, E. V., Lebedev, A. A., Bobrovnikova, I. A., Chernov, N. A., Ivleva, O. M., Lavrentieva, L.G., Teterkina, I. V., and Vilisova, M. D. J. Cryst. Growth, 146, 246 (1995)Google Scholar