Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T03:34:13.305Z Has data issue: false hasContentIssue false

Impurity-Induced Layer Disordering: Current Understanding and Areas for Future Investigation

Published online by Cambridge University Press:  25 February 2011

L.J. Guido
Affiliation:
Yale University, Department of Electrical Engineering, Center for Microelectronic Materials and Structures, P O Box 2157 Yale Station, New Haven, CT 06520
Nick Holonyak JR.
Affiliation:
University of Illinois, Electrical Engineering Research Laboratory, Center for Compound Semiconductor Microelectronics, and Materials Research Laboratory, Urbana, IL 61801
Get access

Abstract

The purpose of this work is to give an overview of the current phenomenological understanding of impurity-induced layer disordering (IILD). First, we identify key experimental findings such as the influence of the crystal surface-ambient interaction, the Fermi-level effect, and the impurity concentration on Al-Ga interdiffusion. Second, we review the strengths and weaknesses of existing IILD models in consideration of the above mentioned experimental data. Finally, we discuss the pitfalls involved in generalizing the results of individual Al-Ga interdiffusion experiments in order to explain a broader collection of IILD data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Valenta, M.W. and Ramasastry, C., Phys. Rev. 106, 73 (1957).Google Scholar
2 Goldstein, B., Phys. Rev. 121, 1305 (1961).Google Scholar
3 Chang, L.L. and Koma, A., Appl. Phys. Lett. 29, 138 (1976).Google Scholar
4 Laidig, W.D., Holonyak, N. Jr., Camras, M.D., Hess, K., Coleman, J.J., Dapkus, P.D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).Google Scholar
5 Holonyak, N. Jr., Laidig, W.D., Camras, M.D., Coleman, J.J., and Dapkus, P.D., Appl. Phys. Lett. 39, 102 (1981).Google Scholar
6 Coleman, J.J., Dapkus, P.D., Kirkpatrick, C.G., Camras, M.D., and Holonyak, N. Jr., Appl. Phys. Lett. 40, 904 (1982).Google Scholar
7 Camras, M.D., Holonyak, N. Jr., Hess, K., Ludowise, M.J., Dietze, W.T., and Lewis, C.R., Appl. Phys. Lett. 42, 185 (1983).Google Scholar
8 Fukuzawa, T., Semura, S., Saito, H., Ohta, T., Uchida, Y., and Nakashima, H., Appl. Phys. Lett. 45, 1 (1984).Google Scholar
9 Meehan, K., Holonyak, N. Jr., Brown, J.M., Nixon, M.A., Gavrilovic, P., and Burnham, R.D., Appl. Phys. Lett. 45, 549 (1984).Google Scholar
10 Deppe, D.G., Hsieh, K.C., Holonyak, N. Jr., Burnham, R.D., and Thornton, R.L., J. Appl. Phys. 58, 4515 (1985).Google Scholar
11 Gavrilovic, P., Meehan, K., Epler, J.E., Holonyak, N. Jr., Burnham, R.D., Thornton, R.L., and Streifer, W., Appl. Phys. Lett. 46, 857 (1985).Google Scholar
12 Major, J.S. Jr., Hall, D.C., Guido, L.J., Holonyak, N. Jr., Gavrilovic, P., Meehan, K., Williams, J.E., and Stutius, W., Appl. Phys. Lett. 55, 271 (1989).Google Scholar
13 Deppe, D.G. and Holonyak, N. Jr., J. Appl. Phys. 64, R93 (1988).Google Scholar
14 Guido, L.J., Major, J.S. Jr., Baker, J.E., Holonyak, N. Jr., Cunningham, B.T., and Stillman, G.E., unpublished data.Google Scholar
15 Zener, C., J. Appl. Phys. 22, 372 (1951).Google Scholar
16 Johnson, R.P., Phys. Rev. 56, 814 (1939).Google Scholar
17 Reiss, H., J. Chem. Phys. 21, 1209 (1953).Google Scholar
18 Kawabe, M., Shimizu, N., Hasegawa, F., and Nannichi, Y., Appl. Phys. Lett. 46, 849 (1985).Google Scholar
19 Tan, T.Y. and Gösele, U., J. Appl. Phys. 61, 1841 (1987).Google Scholar
20 Guido, L.J., Holonyak, N. Jr., Hsieh, K.C., Kaliski, R.W., Plano, W.E., Burnham, R.D., Thornton, R.L., Epler, J.E., and Paoli, T.L., J. Appl. Phys. 61, 1372 (1987).Google Scholar
21 Guido, L.J., Holonyak, N. Jr., and Hsieh, K.C., in Proceedings of the 15th International Symposium on GaAs and Related Compounds, edited by Harris, J.S. (Inst. Phys. Conf. Ser. 96, Bristol and Philadelphia, 1989), pp. 353358.Google Scholar
22 Furuya, A., Wada, O., Takamori, A., and Hashimoto, H., Jap. J. Appl. Phys. 26, L926 (1987).Google Scholar
23 Hsieh, K.Y., Lo, Y.C., Lee, J.H., and Kolbas, R.M., in Proceedings of the 15th International Symposium on GaAs and Related Compounds, edited by Harris, J.S. (Inst. Phys. Conf. Ser. 96, Bristol and Philadelphia, 1989), pp. 393396.Google Scholar
24 Tan, T.Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
25 Mei, P., Yoon, H.W., Venkatesan, T., Schwarz, S.A., and Harbison, J.P., Appl. Phys. Lett. 50, 1823 (1987).Google Scholar
26 Deppe, D.G., Holonyak, N. Jr., Plano, W.E., Robbins, V.M., Dallesasse, J.M., Hsieh, K.C., and Baker, J.E., J. Appl. Phys. 64, 1838 (1988).Google Scholar
27 Deppe, D.G., Holonyak, N. Jr., Hsieh, K.C., Gavrolovic, P., Stutius, W., and Williams, J., Appl. Phys. Lett. 51, 581 (1987).Google Scholar
28 Mei, P., Schwarz, S.A., Venkatesan, T., Schwartz, C.L., and Colas, E., J. Appl. Phys. 65, 2165 (1989).Google Scholar
29 Guido, L.J., Cunningham, B.T., Nam, D.W., Hsieh, K.C., Plano, W.E., Major, J.S. Jr., Vesely, E.J., Sugg, A.R., Holonyak, N. Jr., and Stillman, G.E., unpublished data.Google Scholar
30 Schlesinger, T.E. and Kuech, T., Appl. Phys. Lett. 49, 519 (1986).Google Scholar
31 Guido, L.J., Holonyak, N. Jr., Hsieh, K.C., and Baker, J.E., Appl. Phys. Lett. 54, 262 (1989).Google Scholar
32 Palfrey, H.D., Brown, M., and Willoughby, A.F.W., J. Electrochem. Soc. 128, 2224 (1981).Google Scholar