Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T01:43:52.655Z Has data issue: false hasContentIssue false

Improvement In Electrical Properties of Polycrystalline Silicon Films by The H2O Vapor Annealing Method

Published online by Cambridge University Press:  17 March 2011

Toshiyuki Sameshima
Affiliation:
University of Agriculture and Technology, Faculty of Technology, Tokyo 184-8588, JAPAN
Katsimi Asada
Affiliation:
University of Agriculture and Technology, Faculty of Technology, Tokyo 184-8588, JAPAN
Yoshiyuki Tsunoda
Affiliation:
University of Agriculture and Technology, Faculty of Technology, Tokyo 184-8588, JAPAN
Yoshiyasu Kaneko
Affiliation:
University of Agriculture and Technology, Faculty of Technology, Tokyo 184-8588, JAPAN
Get access

Abstract

Improvement of electrical properties by heat treatment with high-pressure H2O vapor was discussed for 7.4×1017cm−3 phosphorus-doped pulsed laser crystallized silicon films. The analysis of the electrical conductivity resulted in that 1.3×106-Pa-H2O vapor annealing at 270°C for 3 h reduced the density of defect states from 5.5 ×1018 cm−3(as crystallized) to 5.0×1017 cm−3 for tail states and from 1.0×1018 cm−3(as crystallized) to 3.0×1017 cm−3 for deep level defect states. The potential barrier height at grain boundaries decreased from 0.34 eV (as crystallized) to 0.05 eV by the heat treatment. The combination of oxygen plasma with high-pressure H2O vapor annealing effectively reduced the densities of defect tail sates as well as deep level defect states. It achieved a high performance of thin film transistors with a threshold voltage of 1.3 V and an effective mobility of 160 cm2/Vs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sano, N., Sekiya, M., Hara, M., Kohno, A. and Sameshima, T., IEEE EDL 16, 157 (1995).Google Scholar
2. Mitra, U., Rossi, B. and Khan, B., J. Electrochem. Soc. 138, 3420 (1991).Google Scholar
3. Baert, K., Murai, H., Kobayashi, K. and Nunoshima, M., Jpn. J. Appl. Phys. 32, 2601 (1993).Google Scholar
4. Sameshima, T. and Satoh, M., Jpn. J. Appl. Phys. 36, 687 (1997).Google Scholar
5. Sameshima, T., Satoh, M., Sakamoto, K., Ozaki, K. and Saitoh, K., Jpn. J. Appl. Phys. 37, 1030 (1998).Google Scholar
6. Sameshima, T., Satoh, M., Sakamoto, K., Ozaki, K. and Saitoh, K., Jpn. J. Appl. Phys. 37, 4254 (1998).Google Scholar
7. Sameshima, T., Sakamoto, K., Tsunoda, Y. and Saitoh, T., Jpn. J. Appl. Phys. 37, 1452 (1998).10.1143/JJAP.37.L1452Google Scholar
8. Sameshima, T., Satoh, M. and Sakamoto, K., Thin Solid Films. 335 (1998) 138.Google Scholar
9. Asada, K., Sakamoto, K., Watanabe, T., Sameshima, T. and Higashi, S.,Jpn.J.Appl.Phys. 39,3883 (2000).Google Scholar
10.Y.Tsunoda, Sameshima, T. and Higashi, S., Jpn. J.Appl. Phys 39, 1656 (2000).10.1143/JJAP.39.L651Google Scholar
11. Seto, J. Y., J. Appl. Phys. 46, 5247 (1975).Google Scholar
12. Baccarani, G., Ricco, B. and Spadini, G., J. Appl. Phys. 49, 5565 (1978).10.1063/1.324477Google Scholar
13. Prince, M.B., Phys. Rev. 94, 42 (1954).Google Scholar
14. Jackson, Warren B., Johnson, N. M., and Biegelsen, D. K., Appl. Phys. Lett. 43, 195 (1983).10.1063/1.94278Google Scholar