Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T20:39:52.105Z Has data issue: false hasContentIssue false

High-Efficiency CdTe Polycrystalline Thin-Film Solar Cells with an Ultra-Thin CuxTe Transparent Back-Contact

Published online by Cambridge University Press:  01 February 2011

X. Wu
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401
J. Zhou
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401
A. Duda
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401
J. C. Keane
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401
T.A. Gessert
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401
Y. Yan
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401
R. Noufi
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401
Get access

Abstract

To fabricate a high-efficiency polycrystalline thin-film tandem cell, the most critical work is to make a high-efficiency top cell (>15%) with high bandgap (Eg=1.5-1.8 eV) and high transmission (T>70%) in the near-infrared (NIR) wavelength region. The CdTe cell is one of the candidates for the top cell, because CdTe state-of-the-art single-junction devices with efficiencies of more than 16% are available, although its bandgap (1.48 eV) is slightly lower for a top cell in a dual-junction device. In this paper, we focus on the development of an ultra-thin, low-bandgap CuxTe transparent back-contact to produce high-efficiency CdTe cells with high NIR transmission. We have achieved an NREL-confirmed 13.9%-efficient CdTe transparent solar cell with an infrared transmission of ~50% and a CdTe/CIS polycrystalline mechanically stacked thin-film tandem cell with an NREL-confirmed efficiency of 15.3%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Symko-Davies, M., Proceedings of the 19th European PVSEC, Paris, France, p1651, 2004.Google Scholar
2 Gossla, M., and Shafarman, W.N., Thin Solid Films, (in press).Google Scholar
3 AbuShama, J., Noufi, R., Johnston, S., Ward, J.S., and Wu, X., Proceeding of the 31st IEEE PVSC, 2005 (in press).Google Scholar
4 McCandless, B.E. and Birkmire, R.W., Proceeding of the 31st IEEE PVSC, 2005 (in press).Google Scholar
5 Wu, X., Keane, J.C., Dhere, R.G., DeHart, C., Albin, D.S., Duda, A., Gessert, T.A., Asher, S., Levi, D.H., and Sheldon, P., Proceedings of the 17th European PVSEC, p995, 2001.Google Scholar
6 Coutts, T.J., Ward, J.S., Young, D.L., Emery, K.A., Gessert, T.A., and Noufi, R., Progress in Photovoltaics: Research and Applications, 11, p359, 2003.Google Scholar
7 Wu, X., Solar Energy, 77, p803, 2004.Google Scholar
8 Wu, X., Ribelin, R., Dhere, R.G., Albin, D.S., Gessert, T.A., Asher, S., Levi, D.H., Mason, A., Moutinho, H.R., and Sheldon, P., Proceedings of the 28th IEEE PVSC, p470, 2000.Google Scholar
9 Wu, X., Zhou, J., A, Duda, Keane, J.C., Gessert, T.A., Yan, Y., and Noufi, R., Progress in Photovoltaics: Research and Applications, 2005, (in press).Google Scholar
10 Young, D.L., Contreras, M., Romero, M., Asher, S., Perkins, C., Gessert, T.A., Keane, J.C., Coutts, T.J., and Noufi, R., Proceedings of the Third World Conference on Photovoltaic Energy Conversion, p27, 2003.Google Scholar
11 Meyers, P.V., Liu, C.H., Russell, L., Ramanathan, V., Birkmire, R.W., McCandless, B.E., and Phillips, J.E., Proceedings of the 20th IEEE PVSC, p1448, 1988.Google Scholar
12 Desai, D., Hegedus, S., McCandless, B., and Ryan, D., Proceeding of 2005 Spring MRS, (2005), (in press).Google Scholar
13 Gessert, T.A., Coutts, T.J., Duda, A., Dhere, R.G., Johnston, S., and Levi, D.H., NCPV and Solar Program Review Meeting, p409, 2003.Google Scholar
14 Drayton, J., Taylor, C., Gupta, A., Bohn, R.G., Rich, G., Compaan, A.D., McCandless, B.E., and Rose, D., Proceedings of the 29th IEEE PVSC, p539, 2002.Google Scholar
15 Tiwari, A.N., Khrypunov, G., Kurdzesau, F., Batzner, D.L., Romeo, A., and Zogg, H., Progress in Photovoltaics: Research and Applications, 12, p33, 2004.Google Scholar
16 Astakhov, O.P., Berger, L.I., Dovletov, K., and Tashliev, K., Izv. Akad. Nauk Turkmen. SSR Ser. Fiz. Tekh. Nauk, 5, p108, 1973.Google Scholar
17 Ferekides, C.S., Viswanathan, V., and Morel, D.L., Proceedings of the 26th IEEE PVSC, p423, 1997.Google Scholar
18 Yun, J.H., Kim, K.H., Lee, D.Y., Ahn, B.T., and Ohno, T.R., Proceedings of the 29th IEEE PVSC, p543, 2002.Google Scholar
19 McCandless, B.E., Qu, Y., and Birkmire, R.W., Proceedings of the First World Conference on Photovoltaic Energy Conversion, p107, 1994.Google Scholar
20 Chou, H.C., Rohatgi, A., Thomas, E.W., Kamra, S., and Bhat, A.K., J. Electrochem. Soc., 142, No.1, p254, 1995.Google Scholar
21 Aspnes, D.E. and Arwin, H., J. Vac. Sci. Technol. A 2 (3), p1309, 1984.Google Scholar