Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T01:19:02.753Z Has data issue: false hasContentIssue false

A High Resolution Cross-Section Transmission Electron Microscopy Study of Epitaxial rare Earth Fluoride / GaAs(111) Interfaces Prepared by Molecular Beam Epitaxy

Published online by Cambridge University Press:  28 February 2011

C.J. Chien
Affiliation:
Department of Materials Science, Stanford University, Stanford, Ca. 94305-2205.
R.F.C. Farrow
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, Ca 95120-6099.
J.C. Bravman
Affiliation:
Department of Materials Science, Stanford University, Stanford, Ca. 94305-2205.
Get access

Abstract

We report the first HRXTEM study of epitaxial rare earth fluoride/ GaAs(111) interfaces. Such interfaces are of interest because they are the starting point for growth of buried epitaxial rare earth / rare earth fluoride sandwich structures which exhibit interesting and non bulk-like magnetic properties. Also, the optical transitions in ultrathin epitaxial NdF3 films may be influenced by strain and defects in the NdF3 film and the nature of the interface to GaAs.

We find that the rare earth fluoride / GaAs interfaces are semi- coherent but chemically abrupt with the transition taking place within 3Å. However, the interface is physically rough and multiple monolayer steps in the GaAs surface tend to lead to tilt boundaries in the fluoride. The origin of these steps is believed to be thermal etching of the GaAs during the heat-cleaning stage prior to epitaxy. The surface of the fluoride film is much smoother than the initial GaAs surface indicating planarization during epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

+

This work was supported in part by ONR Contract N00014- 87-C-0339.

References

1 (a) Sinharoy, S., Hoffman, R.A., Rieger, J.H., Takei, W.J., Farrow, R.F.C., J. Vac. Sci. Technol., B3, 722 (1985). (b) S. Sinharoy, R.H. Hoffman, A. Rohatgi, R.F.C. Farrow, J.H. Rieger, J. Vac. Sci Technol. 59, 273 (1986) (c) R.F.C. Farrow, S. Sinharoy, R.A. Hoffman, J.H. Rieger, W.J. Takei, Mat. Res. Soc. Symp. Proc. 37, 181 (1985).Google Scholar
2Farrow, R.F.C., Parkin, S.S.P., Speriosu, V.S., Bezinge, A., Segmuller, A.P., Mat. Res. Soc. Symp. Proc. 151, 203 (1989).Google Scholar
3 (a) Maissen, C., Masek, J., Zogg, H., Blunier, S., Appl. Phys. Lett. 53, 1608, (1989) (b) H. Zogg, Appl. Phys. Lett., 53, 1610,(1986). (c) see also S. Hashimoto, J.L. Peng, W.M. Gibson, L.J. Schowalter, R.W. Fathauer, Appl. Phys. Lett. 47, 1071, (1985). for strain relaxation mechanisms in CaF2/Si(111).Google Scholar
4Gregson, D., Catlow, C.R.A., Chadwick, A.V., Lander, G.H., Cormack, A.N., Fender, B.E., Acta. Cryst. B39, 687 (1983).Google Scholar
5Farrow, R.F.C., Speriosu, V.S., Parkin, S.S.P., Chien, C., Bravman, J.C., Marks, R.F., Kirchner, P.D., Prinz, G.A., Jonker, B.T., Mat. Res. Soc. Symp. Proc. 130, 281, (1989).Google Scholar
6 (a) Nagai, H., J. Appl. Phys. 45, 3789, (1974). (b) G. Bai, D.N. Jamieson, M.A. Nicolet, T. Vreeland, Jr., Mat.Res.Soc.Symp. Proc. 102, 259, (1988). (c) B.W. Dodson, D.R. Myers, A.K. Datye, V.S. Kaushik, D.L. Kendall, B. Martinez-Tovar, Phys. Rev. Lett., 61, 2681, (1988).Google Scholar