Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T23:28:58.572Z Has data issue: false hasContentIssue false

Growth and characterization of Ge nanostructures on Si(111)

Published online by Cambridge University Press:  17 March 2011

F. Rosei
Affiliation:
Institute of Physics and Astronomy and CAMP, University of Århus, 8000 C Århus, Denmark Unità INFM and Dipartimento di Fisica, Via della Ricerca Scientifica n.1, 00133 Roma, Italy
N. Motta
Affiliation:
Unità INFM and Dipartimento di Fisica, Via della Ricerca Scientifica n.1, 00133 Roma, Italy
A. Sgarlata
Affiliation:
Unità INFM and Dipartimento di Fisica, Via della Ricerca Scientifica n.1, 00133 Roma, Italy
A. Balzarotti
Affiliation:
Unità INFM and Dipartimento di Fisica, Via della Ricerca Scientifica n.1, 00133 Roma, Italy
Get access

Abstract

Scanning Probe Microscopy (SPM) in situ is used to study the evolution of Ge islands grown by Physical Vapor Deposition on Si(111) 7×7 reconstructed surfaces. Large 3D islands form on the Wetting Layer (WL), with average lateral dimension in the range 200 - 500 nm. The statistical distribution of the island shapes has been analyzed, showing that three types of shapes coexist under certain conditions: strained, partially relaxed and ripened (atoll-like) islands. We measured the contact angles of the island facets, and observed the depletion of the substrate around the ripened islands. These features are attributed to the misfit strain, which is partially relieved by interdiffusion of Si into the Ge layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kamins, T.I., et al. J. Appl. Phys. 81 p211 (1997); T.I. Kamins et al., J. Appl. Phys. 85 p1159 (1999).Google Scholar
[2]Maree, P.M.J. et al., Surf. Sci. 191 p305(1987); U. Köhler et al., Surf. Sci. 248 p321 (1991); T. Fukuda, Surf. Sci. 351 p103 (1996).Google Scholar
[3]Voigtländer, B. and Zinner, M., Appl. Phys. Lett. 63 p3055 (1993); M. Zinke Allmang, Invited Review, Thin Solid Films 346 p1 (1999).Google Scholar
[4]Motta, N., et al. Surf. Sci. 406 p254 (1998).Google Scholar
[5]Capellini, G., et al. Solid State Comm. 112 p145 (1999).Google Scholar
[6]Sgarlata, A., et al. IEEE Proceedings of the XI - SIMC (February 2001).Google Scholar
[7]Medeiros-Ribeiro, G., et al. Science 279, 353 (1998); F.M. Ross et al., Science 286, 193 (1999).Google Scholar
[8]Liao, X.Z., et al. Appl. Phys. Lett. 77 p1304 (2000).Google Scholar
[9]Chaparro, S.A., et al. Appl. Phys. Lett. 76 p3534 (2000).Google Scholar
[10]Seifert, W., et al. J. Cryst. Growth 170 p39 (1997).Google Scholar
[11]Rosei, F., et al. unpublished results.Google Scholar
[12]Daruka, I. and Barabasi, A.L., Phys. Rev. Lett. 79 p3708 (1997).Google Scholar
[13]Boscherini, F., et al. Appl. Phys. Lett. 76 p682 (2000); F. Rosei et al., Thin Solid Films 369 p29 (2000); F. Boscherini et al., Thin Solid Films 380 p173 (2000); N. Motta et al., Mat. Sci. Eng. B, in press; F. Rosei et al., Lecture Notes in Physics in press.Google Scholar