Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-16T12:57:53.108Z Has data issue: false hasContentIssue false

Graphene Electromechanical Actuation; Origins, Optimization and Applications

Published online by Cambridge University Press:  14 February 2012

Geoffrey W. Rogers
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
Jefferson Z. Liu
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
Get access

Abstract

Graphene-based materials have emerged as exceptional candidates for the development of novel, high performance actuators. Developing such an actuation material requires an in depth knowledge of the physics of operation and, therefrom, how to best optimize its performance. We investigate the electromechanical actuation of pristine monolayer graphene to elucidate the origin of this material’s exceptional electromechanical actuation performance. It is shown that the electrostatic double-layer (EDL) effect is dominant compared to the quantum-mechanical (QM) effect upon charging and electrolyte immersion. Seeking to optimize the QM actuation performance, we preliminarily investigate graphene oxide (GO) as a potential graphene-based actuation material, and find that it exhibits both unique and high performance responses. Having demonstrated huge stresses (~100 GPa) and high strains (~0.4%), graphene-based materials are uniquely positioned to address future industrial actuation challenges.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geim, A., Science 324, 1530 (2009).Google Scholar
2. Ihn, T., Güttinger, J., Molitor, F., Schnez, S., Schurtenberger, E., Jacobsen, A., Hellmüller, S., Frey, T., Dröscher, S., Stampfer, C., Ensslin, K., Mater. Today 13, 44 (2010).Google Scholar
3. De Arco, L., Zhang, Y., Schlenker, C., Ryu, K., Thompson, M., Zhou, C., ACS Nano 4, 2865 (2010).Google Scholar
4. Li, H., Zou, L., Pan, L., Sun, Z., Environ. Sci. Technol. 44, 8692 (2010).Google Scholar
5. Simon, P., Gogotsi, Y., Nat. Mater. 7, 845 (2008).Google Scholar
6. Zheng, Q. S., Liu, J. Z., Jiang, Q., Phys. Rev. B 65, 245409 (2002).Google Scholar
7. Baughman, R., Cui, C., Zakhidov, A., Iqbal, Z., Barisci, J., Spinks, G., Wallace, G., Mazzoldi, A., DeRossi, D., Rinzler, A., Jaschinski, O., Roth, S., Kertesz, M., Science 284, 1340 (1999).Google Scholar
8. Sun, G., Kürti, J., Kertesz, M., Baughman, R., J. Am. Chem. Soc. 124, 15076 (2002).Google Scholar
9. Verissimo-Alves, M., Koiller, B., Chacham, H., Capaz, R., Phys. Rev. B 67, 161401 (2003).Google Scholar
10. Pastewka, L., Koskinen, P., Elsässer, C., Moseler, M., Phys. Rev. B 80, 155428 (2009).Google Scholar
11. Rogers, G., Liu, J., J. Am. Chem. Soc. 133, 10858 (2011).Google Scholar
12. Kresse, G., Furthmüller, J., Phys. Rev. B 54, 169 (1996).Google Scholar
13. Kresse, G., Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
14. Tang, W., Sanville, E., Henkelman, G., J. Phys.: Condens. Matter 21, 084204 (2009).Google Scholar
15. Bunch, J., van der Zande, A., Verbridge, S., Frank, I., Tanenbaum, D., Parpia, J., Craighead, H., McEuen, P., Science 315, 490 (2007).Google Scholar
16. Pandey, D., Reifenberger, R., Piner, R., Surf. Sci. 602, 1607 (2008).Google Scholar
17. Xu, Z., Xue, K., Nanotechnol. 21, 045704 (2010).Google Scholar
18. Li, Z., Zhang, W., Luo, Y., Yang, J., Hou, J., J. Am. Chem. Soc. 131, 6320 (2009).Google Scholar
19. Kawai, T., Miyamoto, Y., Curr. Appl. Phys., doi:10.1016/j.cap.2011.07.008 (2011).Google Scholar
20. Zheng, Q. S., Jiang, B., Liu, S. P., Wang, Y. X., Lu, L., Xue, Q. K., Zhu, J., Jiang, Q., Wang, S., Peng, L. M., Phys. Rev. Lett. 100, 067205 (2008).Google Scholar
21. Liang, J., Huang, Y., Oh, J., Kozlov, M., Sui, D., Shaoli, F., Baughman, R., Ma, Y., Chen, Y., Adv. Funct. Mater. 21, 3778 (2011).Google Scholar
22. Liang, J., Xu, Y., Sui, D., Zhang, L., Huang, Y., Ma, Y., Li, F., Chen, Y., J. Phys. Chem. C 114, 17465 (2010).Google Scholar