Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T11:21:06.592Z Has data issue: false hasContentIssue false

GaNAsBi Semiconductor Alloy with Temperature-Insensitive Bandgap

Published online by Cambridge University Press:  01 February 2011

Masahiro Yoshimoto
Affiliation:
yoshimot@dj.kit.ac.jp, Kyoto Inst. Tech., Cooperative Research Center, Matsugasaki,, Sakyo, Kyoto, N/A, N/A, Japan, +81-75-724-7932, +81-75-724-7930
Wei Haung
Affiliation:
hw8150@yahoo.co.jp, Japan
Gan Feng
Affiliation:
gfeng@kit.ac.jp, Japan
Kunishige Oe
Affiliation:
oeku@dj.kit.ac.jp, Japan
Get access

Abstract

GaNyAs1−x−yBix alloys were grown by molecular beam epitaxy (MBE) using solid Ga, Bi, and As sources and nitrogen radicals generated from N2 in rf plasma. To achieve Bi incorporation into the epilayer, As flux was adjusted in a limited range on the brink of As shortage on the growing surface. GaNyAs1−x−yBix alloys lattice-matched to GaAs substrates with different photoluminescence (PL) peak energies were obtained. The GaNyAs1−x−yBix alloy lattice-matched to GaAs turned out to have the structure of Ga(N0.34Bi0.66)zAs1−z. The PL spectra showed that the PL peak energy of GaNyAs1−x−yBix alloy decreased with increasing Bi and N contents with redshift coefficients of ∼62 meV/%Bi and ∼130 meV/%N, respectively, at room temperature. The temperature dependence of the PL peak energy for GaNyAs1−x−yBix in the temperature range of 150∼300 K is much smaller than that of InGaAsP. The temperature coefficients of GaNyAs1−x−yBix bandgaps were governed by the GaBi molar fraction and decrease with increasing GaBi molar fraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oe, K. and Asai, H., Symp. Rec. Elecronic Materials Symp.'95, Izunagaoka, 1995, P. 191.Google Scholar
2. Oe, K. and Asai, H., IEICE Trans. Electron. E79–C, 1751(1996).Google Scholar
3. Joukoff, B. and Jean-Louis, A.M., J. Cryst. Growth 12, 169 (1972).Google Scholar
4. Ma, K. Y., Fang, Z. M., Jaw, D. H., Cohen, R. M. and Stringfellow, G. B., Appl. Phys. Lett. 55, 2420 (1989).Google Scholar
5. Akchurin, R. Kh. and Sakharova, T. V., Crystallography Reports, 40, 674 (1995).Google Scholar
6. Barnett, S. A., J. Vac. Sci. Technol. A5, 2845 (1987).Google Scholar
7. Janotti, A., Wei, S. and Zhang, S. B., Phys. Rev. B 65, 115203 (2002).Google Scholar
8. Ma, K. Y., Fang, Z. M., Jaw, D. H., Cohen, R. M. and Stringfellow, G. B., J. Appl. Phys. 68, 4586 (1990).Google Scholar
9. Oe, K. and Okamoto, H., Jpn. J. Appl. Phys. 37, L1283 (1998).Google Scholar
10. Feng, G., Yoshimoto, M., Oe, K., Chayahara, A. and Horino, Y., Jpn J. Appl. Phys. 44, L1161 (2005).Google Scholar
11. Oe, K., Jpn. J. Appl. Phys. 41, 2801 (2002).Google Scholar
12. Yoshimoto, M., Murata, S., Chayahara, A., Horino, Y., Saraie, J. and Oe, K., Jpn. J. Appl. Phys. 42, L1235 (2003).Google Scholar
13. Tixier, S., Adamcyk, M., Tiedje, T., Francoeur, S., Mascarenhas, A., Wei, P. and Schiettekatte, F., Appl. Phys. Lett. 82, 2245 (2003).Google Scholar
14. Takahiro, K., Kawatsura, K., Oe, K., and Nishiyama, F.: J. Electron. Mater. 32, 34 (2003).Google Scholar
15. Yoshida, J., Kita, T., Wada, O. and Oe, K., Jpn. J. Appl. Phys. 42, 371 (2003).Google Scholar
16. Yoshimoto, M., Huang, W., Takehara, Y., Saraie, J., Chayahara, A., Horino, Y. and Oe, K., Jpn. J. Appl. Phys. 43, L845 (2004).Google Scholar
17. Huang, W., Yoshimoto, M., Takehara, Y., Saraie, J. and Oe, K., Jpn. J. Appl. Phys. 43, L1350 (2004); 43, L1495(E) (2004).Google Scholar
18. Huang, W., Oe, K., Feng, G. and Yoshimoto, M., J. Appl. Phys. 98, 053505 (2005).Google Scholar
19. CRC Handbook of Chemistry and Physics, ed. Lide, D. R. (CRC Press, Boca Laton, 1997) 78th ed. p. 951.Google Scholar
20. Oe, K., Ando, S. and Sigiyama, K., Jpn. J. Appl. Phys, 20, L303 (1981).Google Scholar
21. CRC Handbook of Chemistry and Physics, ed. Weast, R. C. (CRC Press, Cleveland, 1981) 62nd ed. p. D162.Google Scholar
22. Takehara, Y., Yoshimoto, M., Huang, W., Saraie, J., Oe, K., Chayahara, A. and Horino, Y., Jpn. J. Appl. Phys, 45, 67 (2006).Google Scholar
23. Spruytte, S. G., Coldren, C. W., Harris, J. S., Wampler, W., Krispin, P., Ploog, K. H. and Larson, M. C., J. Appl. Phys. 89, 4401 (2001).Google Scholar
24. Rao, E. V., Ougazzaden, A., Le Bellego, Y. and Juhel, M., Appl. Phys. Lett. 72, 1409 (1998).Google Scholar
25. Xin, H. P., Kavanagh, K. L., Kondow, M. and Tu, C. W., J. Cryst. Growth 201, 419 (1999).Google Scholar
26. Buyanova, I. A., Chen, W. M. and Monemar, B., MRS Internet J. Nitride Semicond. Res. 6, 2 (2001).Google Scholar
27. Yoshimoto, M., Huang, W., Takehara, Y., Saraie, J., Chayahara, A., Horino, Y. and Oe, K., Proc. 16th Int. Conf. Indium Phosphide and Related Materials, Kagoshima, Japan, IEEE Cat. No. 04CH37589, (IEEE, New York, 2004) p.501.Google Scholar
28. Yoshimoto, M., Huang, W. and Oe, K. in Progress in Compound Semiconductor Materials IV-Electronic and Optoelectronic Applications eds. Brown, G. J., Biefeld, R. M., Gmachl, C., Manasreh, M. O., Unterrainer, K. (Mater. Soc. Symp. Proc. 829, Pittsburgh, PA, 2005) B11.6.1.Google Scholar
29. Yamazoe, Y., Nishino, T. and Hamakawa, Y., IEEE J. Quantum Electron. 17, 139 (1981).Google Scholar