Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T15:07:44.236Z Has data issue: false hasContentIssue false

GaAs – on – Si Epitaxy: Results for Coverage of ∼ 1 Monolayer

Published online by Cambridge University Press:  25 February 2011

R. D. Bringans
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
M. A. Olmstead
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. I. G. Uhrberg
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. Z. Bachrach
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Core level spectroscopy measurements have been made on Si substrates with coverages of around one monolayer of As, Ga and GaAs. The interfaces were formed on on-axis Si(100) and Si(111) substrates using molecular beam epitaxy. Results are also presented for an arsenic monolayer on a single-domain Si(100) surface prepared by cutting the crystal off-axis by 4 degrees. The strong bonding between As monolayers and the surface of the substrate causes the GaAs to begin to form islands at average coverages of less than one monolayer. The surface between the islands is found to be terminated by a single atomic layer of As. Use of a Ga predeposition technique shows evidence of reducing the tendancy towards island formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. A collection of papers appears in the Material Research Society Symposia Proceedings volume 67, “Heteroepitaxy on Silicon”, Fan, J. C. C. and Poate, J. M. Eds, Materials Research Society, Pittsburgh, (1986).Google Scholar
2. See, for example, Fischer, R., Morkoc, H., Neumann, D. A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M. and Erikson, L. P., J. Appl. Phys., 60, 1640, (1986).Google Scholar
3. Bringans, R. D., Uhrberg, R. I. G., Bachrach, R. Z. and Northrup, J. E., Phys. Rev. Lett., 55, 533, 1985)Google Scholar
4. Uhrberg, R. I. G., Bringans, R. D., Bachrach, R. Z. and Northrup, J. E., Phys. Rev. Lett., 56, 520, (1986)Google Scholar
5. Uhrberg, R. I. G., Bringans, R. D., Olmstead, M. A., Bachrach, R. Z. and Northrup, J. E., Phys. Rev. B, 35, 3945, (1987).CrossRefGoogle Scholar
6. Olmstead, M. A., Bringans, R. D., Uhrberg, R. I. G. and Bachrach, R. Z., Phys. Rev. B, 34, 6401, 1986).Google Scholar
7. Bringans, R. D., Olmstead, M. A., Uhrberg, R. I. G. and Bachrach, R. Z., Proc. 18th Int. Conf. on the Physics of Semiconductors, Engstrom, O., ed. (World Scientific, Singapore) p191, (1987).Google Scholar
8. Harrison, W. A., Kraut, E. A., Waldrop, J. R. and Grant, R. W., Phys. Rev. B, 18, 4402 (1978).Google Scholar
9. Won, T., Munns, G., Houdre, R. and Morkoc, H., Appl. Phys. Lett., 49, 1257, (1986)Google Scholar
10. Biegelsen, D. K., Ponce, F. A., Smith, A. J. and Tramontana, J. C., J. Appl. Phys., 61, 1856, (1987).Google Scholar
11. Hull, R. and Fischer-Colbrie, A., Appl. Phys. Lett., 50, 851, (1987).Google Scholar
12. Olshanetsky, B. Z. and Shklyaev, A. A., Surf. Sci., 82, 445 (1979).Google Scholar
13. Kaplan, R., Surf. Sci., 93, 145(1980).Google Scholar
14. Sakamoto, T. and Hashiguchi, G., Jpn. J. Appl. Phys. 25, L78 (1986).Google Scholar
15. Bringans, R. D., Uhrberg, R. I. G., Olmstead, M. A. and Bachrach, R. Z., Phys. Rev. B, 34, 7447, 1986)Google Scholar