Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T07:51:53.424Z Has data issue: false hasContentIssue false

Fundamental Issues in Heteroepitaxy (Condensed from the Doe Panel Report)

Published online by Cambridge University Press:  28 February 2011

P. S. Peercy*
Affiliation:
Department 1140, Sandia National Laboratories, Albuquerque, NM 87185-5800
Get access

Abstract

The Department of Energy’s Council on Materials Science convened a Panel charged with assessing the present scientific understanding of epitaxial growth and identifying fruitful research opportunities in this area. The Panel, chaired by Paul S. Peercy, a member of the Department of Energy’s Council on Materials Science and of the Solid State Sciences Committee, was composed of scientists in materials science, physics, and chemistry from academia, government labs and industry. Panel members were: Ernst G. Bauer, Brian W. Dodson, Daniel J. Ehrlich, Leonard C. Feldman, C. Peter Flynn, Michael W. Geis, James P. Harbison, Richard J. Matyi, Pierre M. Petroff, Paul S. Peercy, Julia M. Phillips, Gerald B. Stringfellow and Andrew Zangwill. The Panel met in January, 1989; its activities were supported by the Materials Sciences Division of Basic Energy Sciences. Deliberations emphasized artificially structured materials and resulted in a Panel Report which has been submitted to the Journal of Materials Research. With permission from the Department of Energy, this article excerpts from the report.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Frankenheim, M. L., Ann. Phys. 37, 516 (1839).Google Scholar
2Flynn, C. P., J. Phys. F18, L195 (1988); M. H. Yang and C. P. Flynn, Phys. Rev. Lett. 62, 2476 (1989).Google Scholar
3Flynn, C. P., Proc. Acta Metall. Conf. on Metal-Ceramic Interfaces (Santa Barbara, Jan. 1989), Acta Scripta (in press).Google Scholar
4Bauer, E., Z. Krist. 110, 372 (1958).Google Scholar
5Bruinsma, R. and Zangwill, A., Europhys. Lett. 4, 729 (1987).Google Scholar
6Grabow, M. H. and Gilmer, G. H., in Layered Structures and Epitaxy, ed. by Gibson, J. M., Osbourn, G. C., and Tromp, R. M. (MRS, Pittsburgh, 1986) p. 13.Google Scholar
7van der Merwe, J. H., J. Appl. Phys. 34, 117 (1963).Google Scholar
8Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S. and Robinson, I. K., J. Vac. Sci. Technol. A2, 436 (1984).Google Scholar
9Peercy, P. S. and Osbourn, G. C., J. Metals 39, 14 (1986); P. S. Peercy, B. W. Dodson, J. Y. Tsao, E. D. Jones, D. R. Myers, T. E. Zipperian, L. R. Dawson, R. M. Biefeld, J. F. Klem and C. R. Hills, IEEE Electron Device Letts. 9,621 (1988).Google Scholar
10Dodson, B. W. and Tsao, J. Y., Appl. Phys. Lett. 51, 1325 (1987).Google Scholar
11Dodson, B. W. and Tsao, J. Y., in Annual Reviews in Materials Science (in press, 1989).Google Scholar
12Tsao, J. Y., Dodson, B. W., Picraux, S. T. and Cornelison, D. M., Phys. Rev. Lett. 59, 2455 (1987).Google Scholar
13Dodson, B. W., Hull, R. and Bean, J. C., Phys. Rev. Lett. (1989) (in press).Google Scholar
14Keating, P. N., Phys. Rev. 145, 637 (1966).Google Scholar
15Wood, D. M. and Zunger, A., Phys. Rev. Lett. 61, 1501 (1988).Google Scholar
16Morrison, I. A., Kang, M. H. and Mele, E. J., Phys. Rev. B39, 1575 (1989).Google Scholar
17Wang, Z. Q., Liu, S. H., Li, Y. S., Jona, F. and Marcus, P. M., Phys. Rev. B35, 9322 (1987).Google Scholar
18Goodman, D. W., Houston, J. E. and Peden, C. H. F., J. Vac. Sci. Technol. A5, 823 (1987).Google Scholar
19Moruzzi, V. L., Marcus, P. M., Schwarz, K. and Mohn, P., Phys. Rev. B34, 1784 (1986).Google Scholar
20Brunisma, R. and Zangwill, A., J. Phys. (Paris) 47, 2055 (1986).Google Scholar
21Stillinger, F. H. and Weber, T. A., Phys. Rev. B31, 5262 (1985).Google Scholar
22Baskes, M. I., Phys. Rev. Lett. 59, 2666 (1987).Google Scholar
23Daw, M. S. and Baskes, M. I., Phys. Rev. B29, 6443 (1984).Google Scholar
24Petroff, P. M., Gossard, A. C. and Wiegmann, W., Appl. Phys. Lett. 45, 620 (1984).Google Scholar
25Gaines, J. M., Petroff, P. M., Kroemer, H., Simes, R. J., Geels, R. S. and English, J. H., J. Vac. Sci. Technol. B6, 1378 (1988).Google Scholar
26Petroff, P. M., Gaines, J. M., Tsuchiya, M., Simes, R., Coldren, L., Kroemer, H., English, J. and Gossard, A. C., J. Cryst. Growth 95, 260 (1989).Google Scholar
27Horikoshi, Y., Kawashima, M. and Yamaguchi, H., Jpn. J. Appl. Phys. 27, 169 (1988).Google Scholar
28Petroff, P. M., J. Vac. Sci. Technol. 14,1973 (1977).Google Scholar
29Tsuchiya, M., Petroff, P. M. and Coldren, L. A., Appl. Phys. Lett. 54, 1690 (1989).Google Scholar
30Tsuchiya, M., Gaines, J. M., Yan, R. H., Simes, R. J., Holtz, P. O., Coldren, L A., and Petroff, P. M., Phys. Rev. Lett. 6, 466 (1989).Google Scholar
31Petroff, P. M., (to be published)Google Scholar
32Kapon, E., Hwang, D. M. and Bhat, R., Phys. Rev. Lett. 63, 430 (1989); E. Kapon, S. Simhony, D. M. Hwang, K. Kash, R. Bhat and E. Colas, Proc.Conf. on Quantum Electronics and Laser Science, April 24-28, Baltimore, (1989) paper PD 15-1.Google Scholar