Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-21T11:37:30.393Z Has data issue: false hasContentIssue false

Flat Panel Imagers Based on Excimer Laser Annealed, poly-Si Thin Film Transistor Technology

Published online by Cambridge University Press:  17 March 2011

J.P. Lu
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
K. Van Schuylenbergh
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
R. T. Fulks
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
J. Ho
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
Y. Wang
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
R. Lau
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
P. Nylen
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
P. Mei
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
M. Mulato
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
J.B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
R.A. Street
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA
Get access

Abstract

Pulsed Excimer-Laser Annealing (ELA) has become an important technology to produce high performance, poly-Si Thin Film Transistors (TFTs) for large area electronics. The much-improved performance of these poly-Si TFTs over the conventional hydrogenated amorphous Si TFTs enables the possibility of building next generation flat panel imagers with higher-level integration and better noise performance. Both the on-glass integration of peripheral driver electronics to reduce the cost of interconnection and the integration of a pixel level amplifier to improve the noise performance of large area imagers have been demonstrated and are discussed in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blake, J. G., King, M. C., Stevens, J. D. III, Young, R., Solid State Techn., 40 (5), 151 (1997).Google Scholar
2. See, e.g., Brotherton, S. D., Semicond. Science Techn., 10, 721 (1995), and J. B. Boyce and P. Mei, in Technology and Applications of Amorphous Silicon, Springer Series in Materials Science, 37 (Springer-Verlag, Berlin, 2000), pp. 94-146, and the references contained therein to the original works.Google Scholar
3. Street, R. A., Apte, R. B., Ready, S. E., Weisfield, R. L. and Nylen, P., Mat. Res. Soc. Proc., 487, 399 (1998).Google Scholar
4. Mulato, M., Lu, J. P., and Street, R. A., J. Appl. Phys. 89, 638 (2001).Google Scholar
5. Fulks, R. T., Boyce, J. B., Ho, J., Davis, G. A., and Aebi, V., MRS Symp. Proc., Vol 557 (1999).Google Scholar
6. Rahn, J. T., Lemmi, F., Lu, J.P., Mei, P., Street, R. A., Ready, S.E., Ho, J., Apte, R., Schuylenbergh, K. van, Lau, R., Weisfield, R., Lujan, R., and Boyce, J. B., SPIE Proc. of Medical Applications of Penetrating Radiation (1999).Google Scholar