Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T21:22:00.743Z Has data issue: false hasContentIssue false

Examples of Hydrothermal Titration and Real Time X-Ray Diffraction in the Synthesis of Open Frameworks

Published online by Cambridge University Press:  15 February 2011

J. B. Parise
Affiliation:
Earth and Space Sciences, State University of New York, StonyBrook, NY11794–2100 Department of Chemistry, State University of New York, StonyBrook, NY11794–2100
K. Tan
Affiliation:
Earth and Space Sciences, State University of New York, StonyBrook, NY11794–2100
P. Norby
Affiliation:
Department of Chemistry, Brookhaven National Laboratory, Upton, NY11973
Y. Ko
Affiliation:
Earth and Space Sciences, State University of New York, StonyBrook, NY11794–2100
C. Cahill
Affiliation:
Department of Chemistry, State University of New York, StonyBrook, NY11794–2100
Get access

Abstract

Hydrothermal titration (HTT) techniques represent a new synthetic strategy for the production of open frameworks. As an example, initial digestion of amorphous GeS2 in the presence of tetraethyl ammonium hydroxide (TEAOH) at 100°C is followed by injection of Ag+ into this mixture to condense the [Ge4S10]4− clusters and form a framework consisting of 8-ring channels bounded by alternating GeS-clusters and Ag+. The rational use of this apparatus depends upon determining the timing of injection. Insight into the changes occurring during reactant digestion is provided by real time synchrotron X-ray powder diffraction. Changes in the the system dimethylamine-Sb-S have been followed in real time at different temperatures. The transformation from mixtures of DMA, Sb and S to the known open phase DMA-SbS-SB8 was followed by observing monochromatic X-ray scattering detected on an imaging plates over a 8 hr period with one continuous exposure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barrer, R. M., Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, 1978, pp. 12 Google Scholar
2. Herron, N., Wang, Y., Eddy, M. M., Stucky, G. D., Cox, D. E., Moller, K., and Bein, T., J. Am. Chem. Soc. 11, 530(1989).Google Scholar
3. Ozin, G. A., Kuperman, A., and Stein, A., Angew. Chem Int. Ed. Engl. 28, 359 (1989).Google Scholar
4. Barrer, R. M., Zeolites 1, p. 130 (1981).Google Scholar
5. Breck, D. W., Zeolite Molecular Sieves, Krieger, Malabar, FL, 1984, pp. 115 Google Scholar
6. Meier, W. M., and Olson, D. H., Atlas of Zeolite Structure Types, Butterworths, London, 1987, pp. 100 Google Scholar
7. Krebs, B., Voelker, D., and Stiller, K., Inorg. Chem. Acta L101 (1982).Google Scholar
8. Bedard, R. L., Vail, L. D., Wilson, S. T., and Flanigen, E. M., U. S. Patent 4,880,761, (1989).Google Scholar
9. Bedard, R. L., Wilson, S. T., Vail, L. D., Bennett, J. M., and Flanigen, E. M. in Zeolites: Facts, Figures, Future. Proceedings of the 8th International Zeolite Conference, edited by Santen, P. A. J. a. R. A. v. (Elsevier 49, city, 1989), p. 375.Google Scholar
10. Bedard, R. L., Vail, L. D., Wilson, S. T., and Flanigen, E. M., U. S. Patent 4,933,068, (1990).Google Scholar
11. Parise, J. B., and Ko, Y., Chem. Mat. 4, 1446 (1992).Google Scholar
12. Tan, K., Ko, Y., and Parise, J. B., Acta Cryst. C 50, 1439 (1994).Google Scholar
13. Parise, J. B., Ko, .Y., Rijssenbeek, .J., Nellis, .D. M., Tan, .K., Koch, .S., J. Chem Soc, Chem. Commun. 527 (1994).Google Scholar
14. Parise, J. B., and Ko, Y.., Chem. Materials 6, 718 (1994).Google Scholar
15. Ko, Y., Cahill, C., and Parise, J. B., J. Chem. Soc, Chem. Commun. 69 (1994).Google Scholar
16. Jiang, T., Ozin, G. A., and Bedard, R. L., Adv. Mater. 6, 860 (1994).Google Scholar
17. Wood, P. T., Pennington, W. T., and Kolis, J. W., Inorg. Chem. 33, 1556 (1994).Google Scholar
18. Ahari, H., Ozin, G. A., Bedard, R. L., Petrov, S., and Young, D., Adv. Mater. 6, 370 (1995).Google Scholar
19. Ko, Y., Tan, K., Nellis, D. M., Koch, S., and Parise, J. B., J. Solid State Chem. 114, 506 (1995).Google Scholar
20. Nellis, D. M., Ko, Y., Tan, K., Koch, S., and Parise, J. B., J. Chem Soc, Chem. Commun. 541 (1995).Google Scholar
21. Enzel, P., Hederson, G. S., Ozin, G. A., and Bedard, R. L., Adv. Mater. 7, 64 (1995).Google Scholar
22. Parise, J. B., Ko, Y., Tan, K., Nellis, D. M., and Koch, S., J. Solid State Chem. 117, 219 (1995).Google Scholar
23. Tan, K., Ko, Y., and Parise, J. B., Acta Cryst. C 51, 398 (1995).Google Scholar
24. Bowes, C. L., Huynh, W. U., Kirkby, S. J., Malek, A., Ozin, G. O., Petrov, S., Twardowski, M., Young, D., Bedard, R. L., and Broach, R., Chem. Mater. 8, 2147 (1996).Google Scholar
25. Tan, K., Ko, Y., Parise, J. B., and Darovsky, A., Chem. Mater. 8, 448 (1996).Google Scholar
26. Ko, Y., Tan, K., Parise, J. B., and Darovsky, A., Chem. Mater. 8, 493 (1996).Google Scholar
27. Tan, K., Ko, Y., Parise, J. B., Park, J. H., and Darovsky, A., Chem. Mater. 8, 2510 (1996).Google Scholar
28. Parise, J. B., Nellis, D. M., and Ko, Y., in preparation (1996)Google Scholar
29. Barrer, R. M., Hydrothermal Chemistry of the Zeolites, Academic Press., London, 1982, p. 43 Google Scholar
30. Davis, M. E., and Lobo, P. F., Chem. Mater. 4, 756 (1992).Google Scholar
31. Davis, M. E., Chemtech. 22 (1994).Google Scholar
32. Zones, S. I., Olmstead, M. M., and Santilli, D. S., J. Am. Chem. Soc. 114, 4195 (1992).Google Scholar
33. Vaughan, D. J., and Craig, J. R., Mineral Chemistry of Metal Sulfides, Cambridge University Press, Cambridge, 1978, p. 57 Google Scholar
34. Weast, R. C., Eds., Handbook of Chemistry and Physics, CRC press, Cleveland, 1974.Google Scholar
35. Gardner, L. R., Geochim. Cosmochim. Acta 38, 1297 (1974).Google Scholar
36. Krebs, B., Angew. Chem. Int. Ed. Engl. 22, 113 (1983).Google Scholar
37. Schoonen, M. A. A., and Barnes, H. L., Geochem. Cosmochem. Acta 55, 3491 (1991).Google Scholar
38. Cahill, C. L., and Parise, J. B., in preparation (1996)Google Scholar
39. Yaghi, O. M., Sun, Z., Richardson, D. A., and Groy, T. L., J. Am. Chem. Soc. 116, 807 (1994).Google Scholar
40. Tan, K., Darovsky, A., and Parise, J. B., J. Am. Chem. Soc. 117, 7039 (1995).Google Scholar
41. Cahill, C. L., and Panse, J. B., submitted (1996)Google Scholar
42. Smith, G. C, Synch. Rad. News 4, 24 (1991).Google Scholar
43. Rietveld, H. M., J. Appl. Crystallog. 2, 65 (1969).Google Scholar
44. Parise, J. B., and Tan, K., J. Chem. Soc, Chem. Comm. 1687 (1996).Google Scholar
45. Sheldrick, W. S., and Hausier, H. J., Z. anorg. allg. Chem 561, 149 (1988).Google Scholar
46. Parise, J. B., J. Chem. Soc, Chem. Commun. 1553 (1990).Google Scholar
47. Parise, J. B., Science 251, 293 (1991).Google Scholar
48. MaCarthy, T. J., and Kanatzidis, M. G., Inorg. Chem. 33, 1205 (1994).Google Scholar
49. Wang, X., and Liebau, F., J. Solid State Chemistry 385 (1994).Google Scholar
50. Wang, X., Eur. J. Solid State Inorg. Chem. 32, 303 (1995).Google Scholar
51. Anwar, J., and Barnes, P., Phase Transitions 39, 3 (1992).Google Scholar
52. Barnes, P., Clark, S. M., Hausermann, D., Henderson, E., and Fentiman, C. H., Phase Trans. 39, 117(1992).Google Scholar
53. Ståhl, K., and Hanson, J., J. Applied Cryst. 27, 543 (1994).Google Scholar
54. Norby, P., Christensen, A. N., and Hanson, J. C. in Studies in Surface Science and Catalysis, edited by Weitkamp, J., Karge, H. G., Pfeifer, H. and Hölderich, W. (Elsevier 84, city, 1994), p. 179 Google Scholar
55. Christensen, A. N., and Lehmann, M. S., J. Solid State Chem. 51, 196 (1984).Google Scholar
56. Christensen, A. N., Norby, P., and Hanson, J. C, J. Solid State Chem. 114, 556 (1995).Google Scholar
57. Norby, P., Mat. Sci. Forum 228–231, 147 (1996).Google Scholar
58. Norby, P., Darovsky, A., Hanson, J. C, and Meshhovsky, I., in preparationGoogle Scholar
59. Gmelin-Institute, Eds., Gmelis Handbuch der Anorganischen Chemie, Antimon, Teil A, B, 18, Verlag Chemie, GMBH., Weinheim, Bergstrasse, 1949.Google Scholar
60. Cotton, F. A., and Wilkinson, G., Advanced Inorganic Chemistry, John Wiley & Sons, New York, 1988, p 189 Google Scholar
61. Turnbull, D. in Phase Changes, Edited by Seitz, F. and Turnbull, D., 3, Academic Press Inc., New York, 1956, p. 225.Google Scholar
62. Francis, R. J., Price, S. J., Evans, J. S. O., O'Brien, S., O'Hare, D., and Clark, S. M., Chem. Mater. 8, 2102(1996).Google Scholar