Skip to main content Accessibility help

Evaluation of Thin Dielectric-Glue Wafer-Bonding for Three Dimensional Integrated Circuit-Applications

  • Y. Kwon (a1), J. Yu (a1), J.J. McMahon (a1), J.-Q. Lu (a2), T.S. Cale (a1) and R.J. Gutmann (a1)...


The critical adhesion energy of benzocyclobutene (BCB)-bonded wafers is quantitatively investigated with focus on BCB thickness, material stack and thermal cycling. The critical adhesion energy depends linearly on BCB thickness, increasing from 19 J/m2 to 31 J/m2 as the BCB thickness increases from 0.4 μm to 2.6 μm, when bonding silicon wafers coated with plasma enhanced chemical vapor deposited (PECVD) silicon dioxide (SiO2). In thermal cycling performed with 350 and 400 oC peak temperatures, the significant increase in critical adhesion energy at the interface between BCB and PECVD SiO2 during the first thermal cycle is attributed to relaxation of residual stress in the PECVD SiO2 layer. On the other hand, the critical adhesion energy at the interface between BCB and PECVD silicon nitride (SiNx) decreases due to the increase of residual stress in the PECVD SiNx layer during the first thermal cycle.



Hide All
1. Lu, J.-Q., Kwon, Y., McMahon, J.J., Jindal, A., Altemus, B., Cheng, D., Eisenbraun, E., Cale, T.S., and Gutmann, R.J., in 20th International VLSI Multilevel interconnection Conference (VMIC 2003), 227 (2003).
2. Gutmann, R.J., Lu, J.-Q., Pozder, S., Kwon, Y., Jindal, A., Celik, M., McMahon, J.J., Yu, K., and Cale, T.S., in Advanced Metallization Conference in 2003 (AMC 2003), 19 (2003).
3. Kwon, Y., Jindal, A., McMahon, J.J., Lu, J.-Q., Gutmann, R.J., and Cale, T.S., in MRS Symp. Proc., Vol. 766, E5.8.1 (2003).
4. Processing Procedures for Dry-Etch Cyclotene Advanced Electronics Resins, Dow Chemical Company, Midland, MI, 1997.
5. Kwon, Y., Lu, J.-Q., Cale, T.S., and Gutmann, R.J., in International Conference on Microelectronics and Interfaces (ICMI'04), 40 (2004).
6. Sha, Y., Hui, C.Y., Kramer, E.J., Hahn, S.F., and Berglund, C.A., Macromolecules, 29, 4728 (1996).
7. Volinsky, A.A., Moody, N.R., and Gerberich, W.W., Acta Met., 50, 441 (2002).
8. Litteken, C.S., and Dauskardt, R.H., Int. J. Fract., 119/120, 475 (2003).
9. Varias, A.G., Suo, Z., and Shih, C.F., J. Mech. Phys. Solids, 39, 963 (1991).
10. Hohlfelder, R.J., Maidenberg, D.A., Dauskardt, R.H., Wei, Y.G., and Hutchinson, J.W., J. Mater. Res., 16, 243 (2001).
11. Chen, F., Li, B.Z., Sullivan, T.D., Gonzalez, C.L., Muzzy, C.D., Lee, H.K., Dashiell, M.W., Kolodzey, J., and Levy, M.D., J. Vac. Sci. Technol. B, 18, 2826 (2000).
12. Karabacak, T., Zhao, Y.-P., Wang, G.-C., and Lu, T.-M., Phys. Rev. B, 66, 075329 (2002).
13. Toivola, Y., Thurn, J., Cook, R.F., Cibuzar, G., and Roberts, K., J. Appl. Phys., 94, 6915 (2003).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed