Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T18:16:50.796Z Has data issue: false hasContentIssue false

Epitaxial Growth of CoGa on (100)GaAs by Metal-Organic Molecular Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

N. Viguier
Affiliation:
CNRS/INPT, Ecole Nationale Supérieure de Chimie, 118 Route de Narbonne, 31077 Toulouse cedex 4, France
F. Maury
Affiliation:
CNRS/INPT, Ecole Nationale Supérieure de Chimie, 118 Route de Narbonne, 31077 Toulouse cedex 4, France
Get access

Abstract

Epitaxial layers of the intermetallic β-CoGa cubic phase were grown at low temperature on (100)GaAs by metal-organic molecular beam epitaxy (MOMBE) using GaEt3 and CpCo(CO)2 as vapor sources. The film composition and the lattice mismatch on (100)GaAs may be adjusted by controlling the molecular beam pressure ratio. The growth on a Co-saturated GaAs surface leads to the formation of bi-phased CoGa-CoAs films whereas epitaxial single-phased β-CoGa layers are grown on a Ga-terminated GaAs surface with the simple cube on cube orientation [100](001 )CoGa//[100](001)GaAs. Annealing experiments under inert atmosphere have shown that MOMBE CoGa films are thermally stable on GaAs until ca. 823 K. Ohmic and Schottky CoGa/GaAs contacts have been made depending on the doping of the substrate by this process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Palmstrom, C.J. and Morgan, D.V., in Gallium Arsenide: Materials, Devices and Circuits, edited by Howes, M.J. and Morgan, D.V. (Wiley, New York, 1985) p. 195.Google Scholar
2. Sands, T., Palmstrom, C.J., Harbison, J.P., Keramidas, V.G., Tabatabaie, N., Cheeks, T.L., Ramesh, R. and Silberberg, Y., Mater. Sci. Reports 5, 99 (1990).Google Scholar
3. Baugh, D.A., Talin, A.A., Williams, R.S., Kuo, T.-C. and Wang, K.L., J. Vac. Sci. Technol. B 9, 2154 (1991).10.1116/1.585756Google Scholar
4. Kuo, T.C., Kang, T.W. and Wang, K.L., J. Cryst. Growth 111, 996 (1991).Google Scholar
5. Maury, F., Talin, A.A., Kaesz, H.D. and Williams, R.S., Chem. Mater. 5, 84 (1993).10.1021/cm00025a017Google Scholar
6. Viguier, N. and Maury, F., Microelectronic Engineering, 37/38, 165 (1997).10.1016/S0167-9317(97)00108-1Google Scholar
7. Maury, F., Bouabid, K., Fazouan, N., Gué, A.M. and Estève, D., Appl. Surf. Sci. 86, 447 (1995).Google Scholar
8. Panish, M.B. and Temkin, H., Gas Source Molecular Beam Epitaxy - Growth and Properties of Phosphorus Containing III-V Heterostructures, Springer Series in Materials Science 26, Springer-Verlag, Berlin, 1993.Google Scholar
9. Fraser, B., Brandt, L., Stovall, W.K., Kaesz, H.D., Astier, S. and Maury, F., in Proceed. of 43rd Symposium on Organometallic Chemistry, Kinki Chemical Soc., Osaka, Japan, A109, 1996, p. 1819.Google Scholar
10. Shiau, F.-Y., Zuo, Y., Lin, J.C., Zheng, X.-Y., and Chang, Y.A., Z. Metallkde 80, 544 (1989).Google Scholar
11. Genut, M. and Eizenberg, M., J. Appl. Phys. 66, 5456 (1989).Google Scholar
12. Beyers, R., Kim, K.B. and Sinclair, R., J. Appl. Phys. 61, 2195 (1987).10.1063/1.337980Google Scholar
13. Henig, E.-T., Lukas, H.L. and Petzow, G., Z. Metallkde 73, 87 (1982).Google Scholar
14. Yamaguchi, Y., Kiewit, D.A., Aoki, T. and Brittain, J. O., J. Appl. Phys. 39, 231 (1968).Google Scholar
15. Fischer, R.A. and Rogge, W., in Chemical Vapor Deposition edited by Allendorf, M.D. and Bernard, C. (Electrochem. Soc. Proc. Vol.97–25, Pennington, NJ, 1997) p. 10341042.Google Scholar
16. Palmstrom, C.J., Fimland, B.O., Sands, T., Garrison, K.C. and Bartynski, R.A., J. Appl. Phys. 65, 4753 (1989).Google Scholar