Article contents
Electronic States in the Gap of a-Si from Bond Angle Variations
Published online by Cambridge University Press: 25 February 2011
Abstract
We investigate the formation of defect states in the gap of a-Si arising from deviations from the ideal tetrahedral bond angles. The local density of states for Si atoms in disordered environments is calculated using tight-binding parameters for the cluster-Bethe lattice method. The Hamiltonian for a-Si with bond angle distortions is taken as an average over many configurations associated with a random choice of bond angles, weighted by Gaussian distributions with standard deviations between 2°.and 10°. Bond angle deviations in this range generate a density of defect states at the valence band edge that: 1) increases as the average bond angle deviation increases; and 2) is significantly larger than the density of band tail states generated at the conduction band edge. We obtain a shift of the absorption edge from the joint density of states (DOS) as a function of bond angle deviations. In addition, a calculation of the DOS for a distorted tetrahedral cluster embedded in an idealized Bethe lattice yields a threshold bond angle distortion of ±20° for the appearance of a discrete state in the gap near the valence band edge.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1990
References
REFERENCES
- 1
- Cited by