No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
30-keV focused Ga+ ion beam was used for induced deposition of small-area tungsten thin films from W(CO)6 on Si and SiO2. Deposition yield, calculated assuming pure tungsten depositions, depends on dwell time (beam diameter/scan speed) and beam current density. High current density and/or long dwell time are known to cause low deposition yield because of the depletion of adsorbed gas molecules during ion beam irradiation. Based on a model taking this effect into account, numerical fitting was carried out. The reaction cross-section was estimated to be 1.4 × 10−14 cm2. For doses below 1017 ions/cm2, film resistivity decreases with increasing dose. This was confirmed for several dwell times. However, for doses above 1017 ions/cm2, film resistivity remains independent of dose. In this “high”-dose range, variation of beam current density has little effect on film resistivity. AES analyses revealed a consistency between film composition and resistivity. For a “high”-dose film with a resistivity of 190 μΩ-cm, the approximate tungsten content was 50 at%.