Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T03:49:34.913Z Has data issue: false hasContentIssue false

The Effects of Air Annealing on Cuinse2 Thin Films Grown by Molecular Beam Fpitaxy

Published online by Cambridge University Press:  10 February 2011

I. Kim
Affiliation:
Eleetrotechnical Laboratory, MITI, 1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan.
S. Niki
Affiliation:
Eleetrotechnical Laboratory, MITI, 1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan.
P. J. Fons
Affiliation:
Eleetrotechnical Laboratory, MITI, 1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan.
T. Kurafuji
Affiliation:
Eleetrotechnical Laboratory, MITI, 1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan.
M. Okutomi
Affiliation:
Eleetrotechnical Laboratory, MITI, 1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan.
A. Yamada
Affiliation:
Eleetrotechnical Laboratory, MITI, 1-1-4, Umezono, Tsukuba, Ibaraki 305, Japan.
Get access

Abstract

High quality epitaxial CuInSe2 (CIS) films with a range of Cu/In ratios (γ) = 0.80∼2.24 grown by molecular beam epitaxy (MBE) have been post-annealed at temperatures of TA=200∼400°C in both dry-air and Ar atmospheres. Changes in the structure and composition due to annealing have been investigated. The only oxide observed experimentally for both the In-rich, and the Cu-rich CIS films was In2O3. This is consistent with equilibrium thermodynamic calculations which indicate that In2O3 is the mnst stable solid oxide phase. During annealing some reac-tions arc probably kinetically limited making the annealing process a function of time and temperature. but the equilibrium thermodynamic results reported here simplify interpretation of phase space.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hedstrom, J., Bogegard, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M. and Schock, H. W., in Proc. 23rd IEEE Photovoltaic Specialists Conf., Louisville, KY (1993).Google Scholar
2. Madelung, O., Landolt-Bornstein, Group Ill:Crystal and Solid State Physics,17 (1985).Google Scholar
3. Matsushita, H., Endo, S. and Irie, T., Jpn. J. Appl. Phys. 31,2687 (1992).Google Scholar
4. John Tuttle, R., PhD thesis, Colorado University (1990).Google Scholar
5. Niki, S. et al., J. of Crystal Ckowth, 150, 1196 (1994).Google Scholar
6. Groenink, J. A. and Janse, P. H., Z. Phys. Chem., 110,17 (1978).Google Scholar
7. Bates, C. W. Jr., Uekita, M., Nelson, K. F., Abernathy, C. R. and Mooney, J. B., Appl. Phys. Lett., 43, 851 (1983); Proc. 16th IEEE Conf. Photovoltaic Specialists, 1427 (1982).Google Scholar