Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T14:43:44.307Z Has data issue: false hasContentIssue false

The Effect of Growth Interruption on Structural and Optical Properties of InAsP/InP Multiple Quantum Wells

Published online by Cambridge University Press:  21 February 2011

C. A. Tran
Affiliation:
Groupe de Recherche en Physique et Technologie des Couches Minces, Université de Montréal, Département de Physique, C.P. 6128, Suce. "Centre-ville". Montréal, Québec, CANADA, H3C 3J7.
J. T. Graham
Affiliation:
Groupe de Recherche en Physique et Technologie des Couches Minces, Université de Montréal, Département de Physique, C.P. 6128, Suce. "Centre-ville". Montréal, Québec, CANADA, H3C 3J7.
R. A. Masut
Affiliation:
École Polytechnique de Montréal, Département de Génie Physique, C.P. 6079, Suce." Centre-ville", Montréal, Québec, CANADA, H3C 3A7.
J. L. Brebner
Affiliation:
Groupe de Recherche en Physique et Technologie des Couches Minces, Université de Montréal, Département de Physique, C.P. 6128, Suce. "Centre-ville". Montréal, Québec, CANADA, H3C 3J7.
Get access

Abstract

A systematic study of the effect of growth interruption on the interface roughness of InAsxP1-x/InP heterostructures has been carried out. High resolution X-ray diffraction, photoluminescence and optical absorption measurements for InAsP/InP strained multiple quantum wells reveal that the InAsP/InP interface is very sensitive to growth interruption. For nonoptimal growth interruption procedures a large density of interface states is created, probably as a consequence of compositional modifications within the interface region. We find that photoluminescence on its own is insufficient to characterize the interface roughness in our samples, since even for narrow low-temperature peak emissions corresponding to the multiple quantum wells, the absorption spectrum may reveal a significant density of interface states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Osbourn, G. C., Vac, J.. Sci. Technol A 3, 826 (1985).Google Scholar
2 Yablanovitch, E. and Kane, E. O., IEEE J. Lightwave Technol. LT–6, 1292 (1989).Google Scholar
3 Woodward, T. K., Theodore, Sizer, II and Chiu, T. H., Appl. Phys. Lett. 58, 1366 (1991).Google Scholar
4 Schneider, R. P. and Wessels, B. W., Appl. Phys. Lett. 57, 1998 (1990)Google Scholar
5 Landgren, G., Wallin, J. and Pellegrino, S., J. Electro. Mat., 21, 105(1992)Google Scholar
6 Fukui, T. and Horikoshi, H., Jpn. Appl. Phys. 14, L551(1980)Google Scholar
7 Chen, C. H., Cao, D. S. and Stringfellow, D. S., J. Electron. Mater, 17, 67(1988)Google Scholar
8 The HRXRD patterns were simulated using the software developed by P. F. Fewster at Philips.Google Scholar
9 Fewster, P. F., Philips J. of Research 45, 620(1984)Google Scholar
10 Speriosu, V. S., J. Appl. Phys. 52, 6094 (1991)Google Scholar
11 Bastard, G. and Brum, J. A., IEEE J. Quantum Elec. QE–22, 1625 (1986)Google Scholar
12 Neff, H., Bachmann, K. J. and Laidig, W. D., Mat. Res. Soc. Symp. Proc. 56, 289 (1985)Google Scholar
13 McWhan, D. B., Physics, Fabrication, and Applicattions of Multilayered Structures, edited by Mendez, E. E. and von Klitzing, K. pp.67.Google Scholar