Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T09:23:24.254Z Has data issue: false hasContentIssue false

Effect of Crack Blunting on the Ductile-Brittle Response of Crystalline Materials

Published online by Cambridge University Press:  15 February 2011

D.M. Lipkin
Affiliation:
Physical Metallurgy Laboratory, GE Research & Development Center, Niskayuna, NY 12309
G.E. Beltz
Affiliation:
Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106-5070
L.L. Fischer
Affiliation:
Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106-5070
Get access

Abstract

We propose a self-consistent criterion for crack propagation versus dislocation emission, taking into account the effects of crack-tip blunting. Continuum concepts are used to evaluate the evolving competition between crack advance and dislocation nucleation as a function of crack- tip curvature. This framework is used to classify crystals as intrinsically ductile or brittle in terms of the unstable stacking energy, the surface energy, and the peak cohesive stresses achieved during opening and shear of the atomic planes. We find that ductile-brittle criteria based on the assumption that the crack is ideally sharp capture only two of the four possible fracture regimes. One implication of the present analysis is that a crack may initially emit dislocations, only to reinitiate cleavage upon reaching a sufficiently blunted crack-tip geometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rice, J. R. and Thomson, R., Philos. Mag. 29, 73 (1974).Google Scholar
2. Xu, G., Argon, A. S., and Ortiz, M., Philos. Mag. A 75, 341 (1997).Google Scholar
3. Dienes, G. J. and Paskin, A., J. Phys. Chem. Solids 48, 1015 (1987).Google Scholar
4. Schiotz, J., Canel, L. M., and Carlsson, A. E., Phys. Rev. B 55, 6211 (1997).Google Scholar
5. Gumbsch, P., J. Mater. Res. 10, 2897 (1995).Google Scholar
6. Beltz, G. E. and Fischer, L. L., Philos. Mag. A, in press (1998).Google Scholar
7. Weertman, J., in High Cycle Fatigue of Structural Materials, edited by Soboyejo, W. O. and Srivatsan, T. S. (The Minerals, Metals, and Materials Society, 1997) pp. 4148.Google Scholar
8. Griffith, A. A., Philos. Trans. R. Soc. London A 221, 163 (1920).Google Scholar
9. Irwin, G. R., J. Appl. Mech. 24, 361 (1957).Google Scholar
10. Rice, J. R. and Wang, J.-S., Mater. Sci. Eng.A 107, 23 (1989).Google Scholar
11. Inglis, C. E., Trans. Institution of Naval Architects 55, 219 (1913).Google Scholar
12. Muskhelishvili, N. I., Some Basic Problems on the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion and Bending (Noordhoff, 1975).Google Scholar
13. Tada, H., Paris, P. C., and Irwin, G. R., The Stress Analysis of Cracks Handbook (Del Research Corporation, St. Louis, 0985).Google Scholar
14. Beltz, G. E., Lipkin, D. M., and Fischer, L. L., Appl. Phys. Lett., in press (1999).Google Scholar
15. Rice, J. R., J. Mech. Phys. Solids 40, 239 (1992).Google Scholar
16. Sun, Y., Beltz, G. E., and Rice, J. R., Mater. Sci. Eng. A 170, 67 (1993).Google Scholar
17. Cleri, F., Yip, S., Wolf, D., and Phillpot, S. R., Phys. Rev. Lett. 79, 1309 (1997).Google Scholar
18. Weertman, J., Acta Metall. 26, 1731 (1978).Google Scholar
19. Thomson, R., J. Mater. Sci. 13, 128 (1978).Google Scholar
20. Beltz, G. E., Rice, J. R., Shih, C. F., and Xia, L., Acta Materiala 44, 3943 (1996).Google Scholar
21. Lipkin, D. M. and Beltz, G. E, Acta Materiala 44, 1287 (1996).Google Scholar
22. Lipkin, D. M., Clarke, D. R., and Beltz, G. E., Acta Materiala 44, 4051 (1996).Google Scholar
23. Rose, J. H., Smith, J. R., and Ferrante, J., Phys. Rev. B 28, 1835 (1983).Google Scholar