Skip to main content Accessibility help
×
Home

Effect of Crack Blunting on the Ductile-Brittle Response of Crystalline Materials

  • D.M. Lipkin (a1), G.E. Beltz (a2) and L.L. Fischer (a2)

Abstract

We propose a self-consistent criterion for crack propagation versus dislocation emission, taking into account the effects of crack-tip blunting. Continuum concepts are used to evaluate the evolving competition between crack advance and dislocation nucleation as a function of crack- tip curvature. This framework is used to classify crystals as intrinsically ductile or brittle in terms of the unstable stacking energy, the surface energy, and the peak cohesive stresses achieved during opening and shear of the atomic planes. We find that ductile-brittle criteria based on the assumption that the crack is ideally sharp capture only two of the four possible fracture regimes. One implication of the present analysis is that a crack may initially emit dislocations, only to reinitiate cleavage upon reaching a sufficiently blunted crack-tip geometry.

Copyright

References

Hide All
1. Rice, J. R. and Thomson, R., Philos. Mag. 29, 73 (1974).
2. Xu, G., Argon, A. S., and Ortiz, M., Philos. Mag. A 75, 341 (1997).
3. Dienes, G. J. and Paskin, A., J. Phys. Chem. Solids 48, 1015 (1987).
4. Schiotz, J., Canel, L. M., and Carlsson, A. E., Phys. Rev. B 55, 6211 (1997).
5. Gumbsch, P., J. Mater. Res. 10, 2897 (1995).
6. Beltz, G. E. and Fischer, L. L., Philos. Mag. A, in press (1998).
7. Weertman, J., in High Cycle Fatigue of Structural Materials, edited by Soboyejo, W. O. and Srivatsan, T. S. (The Minerals, Metals, and Materials Society, 1997) pp. 4148.
8. Griffith, A. A., Philos. Trans. R. Soc. London A 221, 163 (1920).
9. Irwin, G. R., J. Appl. Mech. 24, 361 (1957).
10. Rice, J. R. and Wang, J.-S., Mater. Sci. Eng.A 107, 23 (1989).
11. Inglis, C. E., Trans. Institution of Naval Architects 55, 219 (1913).
12. Muskhelishvili, N. I., Some Basic Problems on the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion and Bending (Noordhoff, 1975).
13. Tada, H., Paris, P. C., and Irwin, G. R., The Stress Analysis of Cracks Handbook (Del Research Corporation, St. Louis, 0985).
14. Beltz, G. E., Lipkin, D. M., and Fischer, L. L., Appl. Phys. Lett., in press (1999).
15. Rice, J. R., J. Mech. Phys. Solids 40, 239 (1992).
16. Sun, Y., Beltz, G. E., and Rice, J. R., Mater. Sci. Eng. A 170, 67 (1993).
17. Cleri, F., Yip, S., Wolf, D., and Phillpot, S. R., Phys. Rev. Lett. 79, 1309 (1997).
18. Weertman, J., Acta Metall. 26, 1731 (1978).
19. Thomson, R., J. Mater. Sci. 13, 128 (1978).
20. Beltz, G. E., Rice, J. R., Shih, C. F., and Xia, L., Acta Materiala 44, 3943 (1996).
21. Lipkin, D. M. and Beltz, G. E, Acta Materiala 44, 1287 (1996).
22. Lipkin, D. M., Clarke, D. R., and Beltz, G. E., Acta Materiala 44, 4051 (1996).
23. Rose, J. H., Smith, J. R., and Ferrante, J., Phys. Rev. B 28, 1835 (1983).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed