Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T16:40:48.931Z Has data issue: false hasContentIssue false

Ecr Plasma Oxidation of Amorphous Silicon for Improvement of The Interface State in a Poly Silicon Thin Film Transistor

Published online by Cambridge University Press:  10 February 2011

Tae-Hyung Ihn
Affiliation:
Dept. Of metall. Eng. Seoul nat'l univ.
Seok-Woon Lee
Affiliation:
Dept. Of metall. Eng. Seoul nat'l univ.
Byung-Il Lee
Affiliation:
Dept. Of metall. Eng. Seoul nat'l univ.
Yoo-Chan Jeon
Affiliation:
Korea Lg Semicon Co. Ltd.
Seung-Ki Joo
Affiliation:
Dept. Of metall. Eng. Seoul nat'l univ.
Get access

Abstract

A new oxidation process of the poly Silicon thin films has been demonstrated, where the amorphous silicon thin film was oxidized by ECR plasma at room temperature and then crystallized at 600°C for 30hrs(pre-oxidation). For comparison, amorphous silicon thin film was oxidized after crystallization(post-oxidation). The interface roughness turned out to be only 3Å in case of the pre-oxidation process, while the post-oxidation showed about 8Å of the interface roughness. The pre-oxidized TFT showed the constant mobility at high gate voltages, the post-oxidized TFT showed serious degradation of the mobility at high gate voltages.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakazawa, K., J. Appl. Phys., 69(3), p.1703 (1991).Google Scholar
2. King, T. J. and Saraswat, K. C., IEEE Electron Device Lett, 13(6), p.309 (1992).Google Scholar
3. Aoyama, T., Kawachi, G., Konishi, N., Suzuki, T., Okajima, Y., and Miyata, K., J. Electrochem. Soc., 136(4), p. 1169 (1989).Google Scholar
4. Little, T. W., Takahara, K., Koike, H., Nakazawa, T., Yudasaka, I., and Ohshima, H., Jpn. J. Appl. Phys. 30(12B), p.3724 (1991).Google Scholar
5. Kuriyama, H., Kiyama, S., Noguchi, S., Kuwahara, T.. Ishida, S., Nohda, T., Sano, K., Iwata, H., Tsuda, S., and Nakano, S., IEDM 1991 Tech. Dig., p.563 (1991).Google Scholar
6. Irene, E.A, Tierndy, E and Dong, D.W., J. Electrochem. Soc., 127, p.705 (1980).Google Scholar
7. Faramnie, L. et al, J. Electrochem. Soc., 133, p.1410 (1986).Google Scholar
8. Heimann, P. A. et al, J. Appl. Phys., 53, p.6240 (1982).Google Scholar
9. Takechi, K. et al, MRS Proc., 258, p.955 (1992).Google Scholar
10. Kung, Ji-Ho, Hatalis, Miltiadis K. and Jerzy, Kanicki, Thin Solid Films, 216, p.137 (1992)Google Scholar
11. Carl, D. A., Hess, D. W. and Liberman, M. A., J. Vac. Sci. Technol., A8(3), p.2924 (1990).Google Scholar
12. Lee, J. Y., Han, C. H. and Kim, C. K., IEEE Electron Device letters, 15(8), p.301(1994).Google Scholar