Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T19:20:52.583Z Has data issue: false hasContentIssue false

Dual Ion Beam Sputtering of Carbides for EUV Reflectance

Published online by Cambridge University Press:  21 February 2011

Dan Schwarcz
Affiliation:
NASA Goddard Space Flight Center, Code 717.1, Greenbelt, MD 20771
R.A.M. Keski-Kuha
Affiliation:
NASA Goddard Space Flight Center, Code 717.1, Greenbelt, MD 20771
Get access

Abstract

There is a need for thin optical coatings that can be produced at low temperatures and have a high reflectance at the extreme ultraviolet (EUV), λ < 1200 Å. Currently, the best such materials are silicon carbide (SiC) and boron carbide sputtered onto optical surfaces. The EUV reflectance of sputtered SiC, however, is not as high as that of the sputtered target materials (sintered or CVD -SiC). More significantly, the reflectance of both sputtered films degrades with time. In previous work the reflectance degradation of the SiC films has been quantified, and efforts to ameliorate it via ion-beam assisted deposition (BAD) were described. Further work on sputtered SiC films is reported, including chemical and structural analysis. In addition, the degradation behavior of sputtered boron carbide is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Keski-Kuha, Ritva A.M., Osantowski, John F., Herzig, Howard, Gum, Jeffrey S. and Toft, Albert R., Appl. Opt. 27 2815 (1988)Google Scholar
2 Choyke, W.J., Partlow, W.D., Supertzi, E.P., Venskytis, F.J., and Brandt, G.B., Appl. Opt. 16 2013 (1977)Google Scholar
3 Keski-Kuha, R.A.M., Gum, J.S., Osantowski, J.F., and Fleetwood, C.M., SPIE 1742 384 (1992)Google Scholar
4 Windt, D.L. and Bach, B., Appl. Opt. 23 3047 (1984)Google Scholar
5 Kortright, J. B. and Windt, David L., Appl. Opt. 27 2841 (1988)Google Scholar
6 Keski-Kuha, Ritva A.M., Osantowski, John F., Toft, Albert R., and Partlow, William D., Appl. Opt. 27 2815 (1988)Google Scholar
7 Capano, M.A., Walck, S.D., Murray, P.T., Dempsey, D. and Grant, J.T., Appl. Phys. Lett. 64 3413 (1994)Google Scholar
8 Schwarcz, Dan and Keski-Kuha, R.A.M. in Beam-Solid Interactions for Materials Synthesis & Characterization. (Mater. Res. Soc. Proc. 354, Pittsburgh, PA 1995)Google Scholar
9 Schwarcz, Dan and Keski-Kuha, R.A.M., SPIE Proceedings Vol. 2543, to be published.Google Scholar
11 Thornton, J.A., Ann. Rev. Mater. Sci. 7 239 (1977) and J. Vac. Sci. Technol. 11 666 (1974)Google Scholar
12 Bales, G.S. and Zangwill, A., J. Vac. Sci. Technol. A 9 145 (1991)Google Scholar
13 Blouin, M., Guay, D., El Khakani, M.A., Chaker, M., Boily, S. and Jean, A., Thin Solid Films 249 38 (1994)Google Scholar
14 Zheng, Z., Tressler, R.E., and Spear, K.E., J. Electrochem. Soc. 137 854 (1990)Google Scholar
15 Yang, Zunde, Du, Honghua, and Libera, Matthew, J. Mater. Res. 10 1441 (1995)Google Scholar
16 Wang, Pu Sen, Malghan, Subhas G., Hsu, Stephen M. and Wittberg, T. N., Surface Interface & Analysis 18 159 (1992)Google Scholar
17 Martin, P.J., Macleod, H.A., Netterfield, R.P., Pacey, C.G. and Sainty, W.G., Appl. Opt. 22 178 (1983)Google Scholar
18 Müller, Karl-Heinz, J. Appl. Phys. 59 2803 (1986)Google Scholar
19 Martin, P.J., Vacuum 36 585 (1986)Google Scholar
20 Al-Robae, Mansour S., Ghanasyam Krishna, M., Subanna, G.N., Narashimha Rao, K. and Mohan, S., J. Mater. Res. 9 2688 (1994)Google Scholar
21 Takagi, T., Thin Solid Films 92 1 (1982)Google Scholar